Skip to main content

Antibody Affinity and Stability Maturation by Error-Prone PCR

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Antibodies are the fastest growing class of pharmaceutical proteins and essential tools for research and diagnostics. Often antibodies do show a desirable specificity profile but lack sufficient affinity for the desired application. Here, we describe a method to increase the affinity of recombinant antibody fragments based on the construction of mutagenized phage display libraries.

After the construction of a mutated antibody gene library by error-prone PCR, selection of high-affinity variants is either performed by panning in solution or on immobilized antigen with washing conditions optimized for off-rate-dependent selection. An additional screening protocol to identify antibodies with improved thermal stability is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. mAbs 7(1):9–14

    Article  CAS  PubMed  Google Scholar 

  2. Finlay WJ, Bloom L, Cunningham O (2011) Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol Biol 681:87–101

    Article  CAS  PubMed  Google Scholar 

  3. Tiller T et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. mAbs 5(3):445–470

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pantazes RJ, Maranas CD (2013) MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies. BMC Bioinformatics 14:168

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tomszak F et al (2016) Selection of recombinant human antibodies, in protein targeting compounds. In: Prediction, Selection and Activity of Specific Inhibitors. Springer International Publishing, New York, pp 23–54

    Google Scholar 

  6. McCafferty J (1996) Phage display: factors affecting panning efficiency, in phage display of peptides and proteins. Academic Press, Burlington, pp 261–276

    Book  Google Scholar 

  7. Lamdan H et al (2013) Affinity maturation and fine functional mapping of an antibody fragment against a novel neutralizing epitope on human vascular endothelial growth factor. Mol BioSyst 9(8):2097–2106

    Article  CAS  PubMed  Google Scholar 

  8. Li B et al (2014) In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation. mAbs 6(2):437–445

    Article  PubMed  PubMed Central  Google Scholar 

  9. Douthwaite JA et al (2015) Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class a GPCR formyl-peptide receptor 1. mAbs 7(1):152–166

    Article  CAS  PubMed  Google Scholar 

  10. Rajpal A et al (2005) A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 102(24):8466–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu JL et al (2012) Attainment of 15-fold higher affinity of a fusarium-specific single-chain antibody by directed molecular evolution coupled to phage display. Mol Biotechnol 52(2):111–122

    Article  CAS  PubMed  Google Scholar 

  12. Low NM, Holliger P, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260(3):359–368

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury PS (2002) Targeting random mutations to hotspots in antibody variable domains for affinity improvement. Methods Mol Biol 178:269–285

    CAS  PubMed  Google Scholar 

  14. Laffly E et al (2008) Improvement of an antibody neutralizing the anthrax toxin by simultaneous mutagenesis of its six Hypervariable loops. J Mol Biol 378(5):1094–1103

    Article  CAS  PubMed  Google Scholar 

  15. Renaut L et al (2012) Affinity maturation of antibodies: optimized methods to generate high-quality ScFv libraries and isolate IgG candidates by high-throughput screening. Methods Mol Biol 907:451–461

    Article  CAS  PubMed  Google Scholar 

  16. Hust M et al (2014) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 1101:305–320

    Article  CAS  PubMed  Google Scholar 

  17. Schier R et al (1996) Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J Mol Biol 255(1):28–43

    Article  CAS  PubMed  Google Scholar 

  18. Thie H et al (2011) Rise and fall of an anti-MUC1 specific antibody. PLoS One 6(1):e15921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Friguet B et al (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77(2):305–319

    Article  CAS  PubMed  Google Scholar 

  20. Della Ducata D et al (2015) Solution equilibrium titration for high-throughput affinity estimation of unpurified antibodies and antibody fragments. J Biomol Screen 20(10):1256–1267

    Article  CAS  PubMed  Google Scholar 

  21. Vernet T et al (2015) Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. J Mol Recognit 28(10):635–644

    Article  CAS  PubMed  Google Scholar 

  22. Barbas CF III, Burton DR, Scott JK, Silverman GJ (2001) Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p 736

    Google Scholar 

  23. Kügler J et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Welschof M et al (1997) The antigen-binding domain of a human IgG-anti-F(ab')2 autoantibody. Proc Natl Acad Sci U S A 94(5):1902–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hust M et al (2007) Handbook of therapeutic antibodies. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  26. Goletz S et al (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315(5):1087–1097

    Article  CAS  PubMed  Google Scholar 

  27. Finnern R et al (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107(2):269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mersmann M et al (1998) Monitoring of scFv selected by phage display using detection of scFv- pIII fusion proteins in a microtiter scale assay. J Immunol Methods 220(1–2):51–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Frenzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Unkauf, T., Hust, M., Frenzel, A. (2018). Antibody Affinity and Stability Maturation by Error-Prone PCR. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics