Skip to main content

Complexity of Biochemical and Genetic Responses Reduced Using Simple Theoretical Models

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1702))

Abstract

Living systems are known to behave in a complex and sometimes unpredictable manner. Humans, for a very long time, have been intrigued by nature, and have attempted to understand biological processes and mechanisms using numerous experimental and mathematical techniques. In this chapter, we will look at simple theoretical models, using both linear and nonlinear differential equations, that realistically capture complex biochemical and genetic responses of living cells. Even for cases where cellular behaviors are stochastic, as for single-cell responses, randomness added to well-defined deterministic models has elegantly been shown to be useful. The data collectively present evidence for further exploration of the self-organizing rules and laws of living matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldman AW, Burmeister Y, Cesnulevicius K, Herbert M, Kane M, Lescheid D, McCaffrey T, Schultz M, Seilheimer B, Smit A, St Laurent G III, Berman B (2015) Bioregulatory systems medicine: an innovative approach to integrating the science of molecular networks, inflammation, and systems biology with the patient’s autoregulatory capacity? Front Physiol 6:225

    Article  PubMed  PubMed Central  Google Scholar 

  2. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237:37–72

    Article  Google Scholar 

  3. Selvarajoo K (2011) Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling. Cell Commun Signal 9:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Selvarajoo K (2013) Immuno systems biology: a macroscopic approach for immune cell signaling. Springer, New York

    Book  Google Scholar 

  5. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3:1871–1878

    Article  CAS  PubMed  Google Scholar 

  6. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272:3207–3215

    Article  CAS  PubMed  Google Scholar 

  7. Guldberg CM, Waage P (1864) Studies concerning affinity, C. M. Forhandlinger: Videnskabs-Selskabet i Christiana, 35

    Google Scholar 

  8. Leskovac V (2003) Comprehensive enzyme kinetics. Kluwer Academic/Plenum Pub, New York

    Google Scholar 

  9. Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  CAS  PubMed  Google Scholar 

  10. Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    Article  CAS  PubMed  Google Scholar 

  11. Helmy M, Gohda J, Inoue J, Tomita M, Tsuchiya M, Selvarajoo K (2009) Predicting novel features of toll-like receptor 3 signaling in macrophages. PLoS One 4:e4661

    Article  PubMed  PubMed Central  Google Scholar 

  12. Selvarajoo K, Takada Y, Gohda J, Helmy M, Akira S, Tomita M, Tsuchiya M, Inoue J, Matsuo K (2008) Signaling flux redistribution at toll-like receptor pathway junctions. PLoS One 3:e3430

    Article  PubMed  PubMed Central  Google Scholar 

  13. Selvarajoo K (2006) Discovering differential activation machinery of the Toll-like receptor (TLR) 4 signaling pathways in Myd88 knockouts. FEBS Lett 580:1457–1464

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi K, Piras V, Tabata S, Tomita M, Selvarajoo K (2013) A systems biology approach to suppress TNF-induced proinflammatory gene expressions. Cell Commun Signal 11:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piras V, Hayashi K, Tomita M, Selvarajoo K (2011) Enhancing apoptosis in TRAIL-resistant cancer cells using fundamental response rules. Sci Rep 1:144

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hayashi K, Tabata S, Piras V, Tomita M, Selvarajoo K (2015) Systems biology strategy reveals PKCδ is key for sensitizing TRAIL-resistant human fibrosarcoma. Front Immunol 5:659

    Article  PubMed  PubMed Central  Google Scholar 

  17. Selvarajoo K (2017) A systems biology approach to overcome TRAIL resistance in cancer treatment. Prog Biophys Mol Biol 128:142–154

    Article  CAS  PubMed  Google Scholar 

  18. Selvarajoo K, Tomita M, Tsuchiya M (2009) Can complex cellular processes be governed by simple linear rules? J Bioinformatics Comp Biol 7:243–268

    Article  CAS  Google Scholar 

  19. Selvarajoo K (2014) Parameter-less approaches for interpreting dynamic cellular response. J Biol Eng 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kaufmann S (1995) At home in the universe: the search for laws of self-organization and complexity. Oxford University Press, New York

    Google Scholar 

  21. Chatterjee A, Cook LC, Shu CC, Chen Y, Manias DA, Ramkrishna D et al (2013) Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer. Proc Natl Acad Sci U S A 110:7086–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poulsen AK, Lauritsen FR, Olsen LF (2004) Sustained glycolytic oscillations—no need for cyanide. FEMS Microbiol Lett 236:261–266

    CAS  PubMed  Google Scholar 

  23. Prigogine I (1997) The end of certainty. The Free Press, New York

    Google Scholar 

  24. Field RJ, Korös E, Noyes RM (1972) Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J Am Chem Soc 94:8649–8664

    Article  CAS  Google Scholar 

  25. Epstein IR (2006) Predicting complex biology with simple chemistry. Proc Natl Acad Sci U S A 103:15727–15728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richard JF, Noyes RM (1974) Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J Chem Phys 60:1877–1884

    Article  Google Scholar 

  27. Goodwin BC (1965) Oscillatory behaviour in enzymatic control processes. Adv Enz Reg 3:425–428

    Article  CAS  Google Scholar 

  28. Ruoff P, Vinsjevik M, Monnerjahn C, Rensing L (1999) The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J Biol Rhythm 14:469–479

    Article  CAS  Google Scholar 

  29. François P, Despierre N, Siggia E (2012) Adaptive temperature compensation in circadian oscillations. PLoS Comput Biol 8:e1002585

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zeiser S, Muller J, Liebscher V (2007) Modeling the Hes1 oscillator. J Comput Biol 14:984–1000

    Article  CAS  PubMed  Google Scholar 

  31. Griffith JS (1968) Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol 20:202–208

    Article  CAS  PubMed  Google Scholar 

  32. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  33. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193

    Article  CAS  PubMed  Google Scholar 

  35. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  CAS  PubMed  Google Scholar 

  36. http://www.uoguelph.ca/~mgarvie/turing.html

  37. Chen TH, Guo C, Zhao X, Yao Y, Boström KI, Wong MN, Tintut Y, Demer LL, Ho CM, Garfinkel A (2012) Patterns of periodic holes created by increased cell motility. Interface Focus 2:457–464

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peña B, Pérez-García C (2001) Stability of Turing patterns in the Brusselator model. Phys Rev E Stat Nonlinear Soft Matter Phys 64:056213

    Article  Google Scholar 

  39. Selvarajoo K (2012) Understanding multimodal biological decisions from single cell and population dynamics. Wiley Interdiscip Rev Syst Biol Med 4:385–399

    Article  CAS  PubMed  Google Scholar 

  40. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  PubMed  Google Scholar 

  41. Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 99:12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464

    Article  CAS  PubMed  Google Scholar 

  43. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunlop MJ, Cox RS III, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat Genet 40:1493–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blake WJ, KAErn M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  CAS  PubMed  Google Scholar 

  46. Piras V, Tomita M, Selvarajoo K (2014) Transcriptome-wide variability in single embryonic development cells. Sci Rep 4:7137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bizzarri M, Palombo A, Cucina A (2013) Theoretical aspects of systems biology. Prog Biophys Mol Biol 112:33–43

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Selvarajoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Selvarajoo, K. (2018). Complexity of Biochemical and Genetic Responses Reduced Using Simple Theoretical Models. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 1702. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7456-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7456-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7455-9

  • Online ISBN: 978-1-4939-7456-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics