Skip to main content

Development of Targeted Therapies Based on Gene Modification

  • Protocol
  • First Online:
Disease Gene Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1706))

Abstract

With the advent of next-generation sequencing (NGS) and the demand for a personalized healthcare system, the fields of precision medicine and gene therapy are advancing in new directions. There is a push to identify genes that contribute to disease development, either alone or in conjunction with other genes or environmental factors, and then design targeted therapies based on this knowledge, rather than the traditional approach of treating generalized symptoms with pharmaceuticals in a one-size-fits-all manner. Identification of genes that contribute to disease pathogenesis and progression is critical for the maturation of the precision medicine field. Concomitant with a better understanding of disease pathology, precision medicine approaches can be adopted with greater confidence and are expected to lead to a new standard for clinical practice. In this chapter, we provide a brief introduction to precision medicine, discuss the importance of identifying genes and genetic variants that contribute to disease development and progression, offer examples of approaches that can be applied to treat specific diseases, and present some of the current challenges and limitations of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Szefler SJ, Martin RJ (2010) Lessons learned from variation in response to therapy in clinical trials. J Allergy Clin Immunol 125:285–292. quiz 293–284

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yu H, Zhang VW (2015) Precision medicine for continuing phenotype expansion of human genetic diseases. Biomed Res Int 2015:745043

    PubMed  PubMed Central  Google Scholar 

  3. Panicker V (2011) Genetics of thyroid function and disease. Clin Biochem Rev 32:165–175

    PubMed  PubMed Central  Google Scholar 

  4. McAninch EA, Bianco AC (2016) The history and future of treatment of hypothyroidism. Ann Intern Med 164:50–56

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tonstad S, Nathan E, Oda K, Fraser G (2013) Vegan diets and hypothyroidism. Nutrients 5:4642–4652

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moyerbrailean GA, Richards AL, Kurtz D, Kalita CA, Davis GO, Harvey CT, Alazizi A, Watza D, Sorokin Y, Hauff N, Zhou X, Wen X, Pique-Regi R, Luca F (2016) High-throughput allele-specific expression across 250 environmental conditions. Genome Res 26:1627–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, Chen CH, Delahanty RJ, Okada Y, Tabara Y, Gu D, Zhu D, Haiman CA, Mo Z, Gao YT, Saw SM, Go MJ, Takeuchi F, Chang LC, Kokubo Y, Liang J, Hao M, Le Marchand L, Zhang Y, Hu Y, Wong TY, Long J, Han BG, Kubo M, Yamamoto K, Su MH, Miki T, Henderson BE, Song H, Tan A, He J, Ng DP, Cai Q, Tsunoda T, Tsai FJ, Iwai N, Chen GK, Shi J, Xu J, Sim X, Xiang YB, Maeda S, Ong RT, Li C, Nakamura Y, Aung T, Kamatani N, Liu JJ, Lu W, Yokota M, Seielstad M, Fann CS, A. T. C. Genetic Investigation of, J. Y. Wu, J. Y. Lee, F. B. Hu, T. Tanaka, E. S. Tai, and X. O. Shu (2012) Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet 44:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, Mountain JL, Goldman SM, Tanner CM, Langston JW, Wojcicki A, Eriksson N (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet 7:e1002141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyajima A, Furihata T, Chiba K (2009) Functional analysis of GC Box and its CpG methylation in the regulation of CYP1A2 gene expression. Drug Metab Pharmacokinet 24:269–276

    Article  CAS  PubMed  Google Scholar 

  10. Flowers E, Won GY, Fukuoka Y (2015) MicroRNAs associated with exercise and diet: a systematic review. Physiol Genomics 47:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014) MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 26:1888–1896

    Article  CAS  PubMed  Google Scholar 

  12. Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S (2013) Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 41:9197–9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voigt K, Gogol-Doring A, Miskey C, Chen W, Cathomen T, Izsvak Z, Ivics Z (2012) Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 20:1852–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue HY, Zhang X, Wang Y, Xiaojie L, Dai WJ, Xu Y (2016) In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther 23:557–559

    Article  CAS  PubMed  Google Scholar 

  15. Magner D, Biala E, Lisowiec-Wachnicka J, Kierzek E, Kierzek R (2015) A tandem oligonucleotide approach for SNP-selective RNA degradation using modified antisense oligonucleotides. PLoS One 10:e0142139

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243

    Article  PubMed  Google Scholar 

  17. Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 1859:71–81

    Article  CAS  PubMed  Google Scholar 

  18. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  19. Kolypetri P, King J, Larijani M, Carayanniotis G (2015) Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 34:542–556

    Article  CAS  PubMed  Google Scholar 

  20. Zhang E, Xu H (2017) A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH (2016) Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  23. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  24. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  26. Baum C, Kustikova O, Modlich U, Li Z, Fehse B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:253–263

    Article  CAS  PubMed  Google Scholar 

  27. Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1):S10–S17

    Article  CAS  PubMed  Google Scholar 

  28. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  CAS  PubMed  Google Scholar 

  29. Tseng WC, Haselton FR, Giorgio TD (1997) Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J Biol Chem 272:25641–25647

    Article  CAS  PubMed  Google Scholar 

  30. Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295

    Article  PubMed  Google Scholar 

  31. Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X (2016) A near-infrared laser-activated “Nanobomb” for breaking the barriers to microRNA delivery. Adv Mater 28:347–355

    Article  CAS  PubMed  Google Scholar 

  32. Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12:301–315

    Article  CAS  PubMed  Google Scholar 

  33. Gschweng E, De Oliveira S, Kohn DB (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257:237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jethwa H, Adami AA, Maher J (2014) Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin Immunol 150:51–63

    Article  CAS  PubMed  Google Scholar 

  35. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  CAS  PubMed  Google Scholar 

  36. Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, Schurman SH, Garabedian E, Kesserwan C, Jagadeesh GJ, Fu PY, Gschweng E, Cooper A, Tisdale JF, Weinberg KI, Crooks GM, Kapoor N, Shah A, Abdel-Azim H, Yu XJ, Smogorzewska M, Wayne AS, Rosenblatt HM, Davis CM, Hanson C, Rishi RG, Wang X, Gjertson D, Yang OO, Balamurugan A, Bauer G, Ireland JA, Engel BC, Podsakoff GM, Hershfield MS, Blaese RM, Parkman R, Kohn DB (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120:3635–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  38. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574

    Article  CAS  PubMed  Google Scholar 

  39. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  CAS  PubMed  Google Scholar 

  41. Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Development 140:2457–2461

    Article  CAS  PubMed  Google Scholar 

  43. Wu N, Doorenbos M, Chen DF (2016) Induced pluripotent stem cells: development in the ophthalmologic field. Stem Cells Int 2016:2361763

    PubMed  PubMed Central  Google Scholar 

  44. Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288

    Article  CAS  PubMed  Google Scholar 

  45. Normile D (2017) iPS cell therapy reported safe. Science 355:1109–1110

    Article  CAS  PubMed  Google Scholar 

  46. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154

    Article  CAS  Google Scholar 

  47. Ou Z, Niu X, He W, Chen Y, Song B, Xian Y, Fan D, Tang D, Sun X (2016) The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human beta-thalassemia in mice. Sci Rep 6:32463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chambliss AB, Chan DW (2016) Precision medicine: from pharmacogenomics to pharmacoproteomics. Clin Proteomics 13:25

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17:507–522

    Article  CAS  PubMed  Google Scholar 

  50. Hess GP, Fonseca E, Scott R, Fagerness J (2015) Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders. Genet Res (Camb) 97:e13

    Article  Google Scholar 

  51. Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, Moliterni A, Vazquez F, Byakhov MJ, Lichinitser M, Climent MA, Ciruelos E, Ojeda B, Mansutti M, Bozhok A, Magazzu D, Heinzmann D, Steinseifer J, Valagussa P, Baselga J (2014) Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15:640–647

    Article  CAS  PubMed  Google Scholar 

  52. Hood L, Balling R, Auffray C (2012) Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J 7:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Servant N, Romejon J, Gestraud P, La Rosa P, Lucotte G, Lair S, Bernard V, Zeitouni B, Coffin F, Jules-Clement G, Yvon F, Lermine A, Poullet P, Liva S, Pook S, Popova T, Barette C, Prud’homme F, Dick JG, Kamal M, Le Tourneau C, Barillot E, Hupe P (2014) Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet 5:152

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wolkenhauer O, Auffray C, Brass O, Clairambault J, Deutsch A, Drasdo D, Gervasio F, Preziosi L, Maini P, Marciniak-Czochra A, Kossow C, Kuepfer L, Rateitschak K, Ramis-Conde I, Ribba B, Schuppert A, Smallwood R, Stamatakos G, Winter F, Byrne H (2014) Enabling multiscale modeling in systems medicine. Genome Med 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tortolina L, Duffy DJ, Maffei M, Castagnino N, Carmody AM, Kolch W, Kholodenko BN, De Ambrosi C, Barla A, Biganzoli EM, Nencioni A, Patrone F, Ballestrero A, Zoppoli G, Verri A, Parodi S (2015) Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies. Oncotarget 6:5041–5058

    Article  PubMed  Google Scholar 

  56. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE (2015) Big data: astronomical or genomical? PLoS Biol 13:e1002195

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, Letouze E, Pilati C, Verret B, Blanc JF, Balabaud C, Calderaro J, Laurent A, Letexier M, Bioulac-Sage P, Calvo F, Zucman-Rossi J (2015) Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 47:1187–1193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna K. DiStefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benson, T.M., Leti, F., DiStefano, J.K. (2018). Development of Targeted Therapies Based on Gene Modification. In: DiStefano, J. (eds) Disease Gene Identification. Methods in Molecular Biology, vol 1706. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7471-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7471-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7470-2

  • Online ISBN: 978-1-4939-7471-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics