Skip to main content

A Stoichiometrically Defined Neural Coculture Model to Screen Nanoparticles for Neurological Applications

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

In neuronanotherapeutics, regenerative goals could be achieved by designing therapeutic nanoparticles to target, or evade, specific neural cell types. However, effective screening of candidate particles is hampered by the limited neuromimetic capacity of available biological models. Central nervous system (CNS) tissue is composed of multiple specialized cell types, with dramatically differing particle uptake profiles, dominated by microglia, the ubiquitous immune component of the CNS, resulting in competition for particle uptake. Such dynamics are difficult to monitor in vivo, while in vitro monocultures lack competitive uptake and so predictive value. Available coculture systems are frequently oversimplistic, lack reproducible composition and/or fail to include the immune component. Further, cell-specific culture media are often employed for each neural cell type, leading to differences in protein corona formation around particles, potentially confounding cross-cellular analyses. We describe a novel coculture system that can overcome these limitations, and discuss its utility for assessing uptake, toxicity, and functional efficacy of nanoparticles intended for neurological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Landeghem FKH et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    Article  PubMed  Google Scholar 

  2. Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM (2014) Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. Mol Cell Ther 2:23

    Article  PubMed  PubMed Central  Google Scholar 

  3. Knežević NŽ, Lin VSY (2013) A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 5:1544–1551

    Google Scholar 

  4. Jenkins SI, Pickard MR, Furness DN, Yiu HHP, Chari DM (2013) Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine (Lond) 8:951–968

    Article  CAS  Google Scholar 

  5. Soenen SJH et al (2010) Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6:2136–2145

    Article  CAS  PubMed  Google Scholar 

  6. Petters C, Thiel K, Dringen R (2016) Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 10:332–342

    Article  CAS  PubMed  Google Scholar 

  7. Wu H-Y et al (2013) Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 10:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maysinger D, Behrendt M, Lalancette-Hébert M, Kriz J (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7:2513–2520

    Article  CAS  PubMed  Google Scholar 

  9. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell ‘sees’ in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  PubMed  Google Scholar 

  10. Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115:18275–18283

    Article  CAS  Google Scholar 

  11. Ghavami M et al (2013) Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 3:1119

    Article  CAS  Google Scholar 

  12. Mahmoudi M et al (2013) Temperature: the ‘ignored’ factor at the NanoBio interface. ACS Nano 7:6555–6562

    Article  CAS  PubMed  Google Scholar 

  13. Soukup D, Moise S, Céspedes E, Dobson J, Telling ND (2015) In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano 9(1):231–240

    Google Scholar 

  14. Brun E, Sicard-Roselli C (2014) Could nanoparticle corona characterization help for biological consequence prediction? Cancer Nanotechnol 5:7

    Google Scholar 

  15. Jenkins SI, Roach P, Chari DM (2015) Development of a nanomaterial bio-screening platform for neurological applications. Nanomedicine 11:77–87

    Google Scholar 

  16. Rubio N, Rodriguez R, Arevalo MA (2004) In vitro myelination by oligodendrocyte precursor cells transfected with the neurotrophin-3 gene. Glia 47:78–87

    Article  PubMed  Google Scholar 

  17. Rasband WS. U.S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/

  18. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  19. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y et al (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2:1044–1051

    Article  CAS  PubMed  Google Scholar 

  22. Occhetta P, Glass N, Otte E, Rasponi M, Cooper-White JJ (2016) Stoichiometric control of live cell mixing to enable fluidically-encoded co-culture models in perfused microbioreactor arrays. Integr Biol 8:194–204

    Article  CAS  Google Scholar 

  23. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62:1377–1391

    Article  PubMed  Google Scholar 

  24. Fernandes AR, Adams CF, Furness DN, Chari DM (2015) Early membrane responses to magnetic particles are predictors of particle uptake in neural stem cells. Part Part Syst Charact 32:661–667

    Article  CAS  Google Scholar 

  25. Bulte JWM et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A 96:15256–15261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cianciaruso C et al (2014) Cellular magnetic resonance with iron oxide nanoparticles: long-term persistence of SPIO signal in the CNS after transplanted cell death. Nanomedicine (Lond) 9:1457–1474

    Article  CAS  Google Scholar 

  27. Jenkins SI (2013) Applications of magnetic particles for oligodendrocyte precursor cell transplantation strategies. Doctoral thesis, Keele University. http://eprints.keele.ac.uk/3821/

    Google Scholar 

  28. Luther EM et al (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9:8454–8465

    Article  CAS  PubMed  Google Scholar 

  29. Geppert M et al (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    Article  PubMed  Google Scholar 

  30. McCloy RA et al (2014) Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13:1400–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jenkins SI et al (2014) Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy. ACS Chem Neurosci 5:51–63

    Article  CAS  PubMed  Google Scholar 

  33. Yiu HHP et al (2012) Fe3O4-PEI-RITC magnetic nanoparticles with imaging and gene transfer capability: development of a tool for neural cell transplantation therapies. Pharm Res 29:1328–1343

    Article  CAS  PubMed  Google Scholar 

  34. Amiri H et al (2013) Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 5:8656–8665

    Article  CAS  PubMed  Google Scholar 

  35. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  CAS  PubMed  Google Scholar 

  36. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459

    Article  Google Scholar 

  37. Fernandes AR, Chari DM (2014) A multicellular, neuro-mimetic model to study nanoparticle uptake in cells of the central nervous system. Integr Biol 6:855–861

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following for advice on protocol development, equipment operation and analysis techniques: Chris Adams, James Beardmore, Alinda Fernandes, David Furness, Mark Pickard, Paul Roach, Emma Shardlow, Jacqueline Tickle, Karen Walker, Alan Weightman (all Keele University), and Humphrey Yiu (Heriot-Watt University). These protocols were developed while SJ was supported by an Engineering and Physical Sciences Research Council (EPSRC; UK) Engineering Tissue Engineering and Regenerative Medicine (E-TERM) Landscape Fellowship (EP/I017801/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart I. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jenkins, S.I., Chari, D.M. (2018). A Stoichiometrically Defined Neural Coculture Model to Screen Nanoparticles for Neurological Applications. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics