Skip to main content

Influence of External Electrical Stimulation on Cellular Uptake of Gold Nanoparticles

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

Metal nanoparticles, more specifically gold nanoparticles (AuNPs), have become increasingly popular in research due to their optical, thermal, and electronic properties. It is these properties that have made them excellent for usage in life science areas such as medical, biological imaging, and drug delivery. AuNPs have been applied to multimodal imaging techniques to assist in fluorescence, MRI, and CT and in diagnostics through surface-enhanced Raman spectroscopy (SERS). These techniques all rely on the interaction of nanoparticles with electromagnetic stimulation. Here, we describe an experimental approach to investigate the combinatorial effects of gold nanoparticles with ultra-short electrical pulses. Specifically, we investigate cell membrane interaction with AuNPs to obtain information at the cellular level of possible changes in the uptake mechanism of the AuNPs. Our goal is to study the possibility of designing AuNPs for use in biomedical studies such as neuron stimulation and brain mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond) 2(1):113–123. https://doi.org/10.2217/17435889.2.1.113

    Article  CAS  Google Scholar 

  2. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125(27):8102–8103. https://doi.org/10.1021/ja034876s

    Article  CAS  PubMed  Google Scholar 

  3. Thanh NT, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74(7):1624–1628

    Article  CAS  PubMed  Google Scholar 

  4. Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM (2011) Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol 84(1002):526–533. https://doi.org/10.1259/bjr/42612922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711. https://doi.org/10.1021/nl050127s

    Article  CAS  PubMed  Google Scholar 

  6. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387. https://doi.org/10.1038/nrc1071

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Nurunnabi M, Nafiujjaman M, Y-k L, Huh KM (2013) GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release 171(2):241–250. https://doi.org/10.1016/j.jconrel.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  8. Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC (2014) Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials 35(21):5527–5538. https://doi.org/10.1016/j.biomaterials.2014.03.065

    Article  CAS  PubMed  Google Scholar 

  9. Tiwari P, Vig K, Dennis V, Singh S (2011) Functionalized gold nanoparticles and their biomedical applications. Nano 1(1):31–63

    CAS  Google Scholar 

  10. Menichetti L, Luigi P, Flori A, Kusmic C, De Marchi D, Sergio Casciaro FC, Lombardi M, Positano V, Arosio D (2013) Iron oxide-gold core-shell nanoparticles as multimodal imaging contrast agent. IEEE Sensors J 13(6):2341–2347

    Article  CAS  Google Scholar 

  11. Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S, Costoya JA, Taboada P, Mosquera V (2014) Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 8(3):2725–2738. https://doi.org/10.1021/nn406425h

    Article  CAS  PubMed  Google Scholar 

  12. Reju Thomas I-KP, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14(8):15910–15930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jit Kang Lim SAMaRDT (2009) Stabilization of superparamagnetic iron oxide core−gold shell nanoparticles in high ionic strength media. Langmuir 25(23):13384–13393

    Article  CAS  Google Scholar 

  14. Carril M, Fernández I, Rodríguez J, García I, Penadés S (2014) Gold-coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part Part Syst Charact 31(1):81–87. https://doi.org/10.1002/ppsc.201300239

    Article  CAS  Google Scholar 

  15. Coughlin AJ (2013) Gold nanoconstructs for multimodal diagnostic imaging and photothermal cancer therapy. Dissertation, Rice University, ProQuest Dissertations and Theses (PQDT) Database

    Google Scholar 

  16. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696. https://doi.org/10.1021/nn901877h

    Article  CAS  PubMed  Google Scholar 

  17. Rengan AK, Jagtap M, De A, Banerjee R, Srivastava R (2014) Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale 6(2):916–923. https://doi.org/10.1039/c3nr04448c

    Article  CAS  PubMed  Google Scholar 

  18. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. https://doi.org/10.1021/ja057254a

    Article  CAS  PubMed  Google Scholar 

  19. Nanophotonics Nanomedical Research Group (2007) Nanoplasmonics. http://www.nanotrio.com/board/list.php?category=&board_num=11&rowid=19&go=&sw=&sn=&st=&sc=&page=1

  20. Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discovery Today 17(17–18):928–934. https://doi.org/10.1016/j.drudis.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  21. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. https://doi.org/10.1039/B806051G

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang SS (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J (Sudbury, MA) 8(2):154–163

    Article  Google Scholar 

  23. Huang X, Jain P, El-Sayed I, El-Sayed M (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228. https://doi.org/10.1007/s10103-007-0470-x

    Article  PubMed  Google Scholar 

  24. Heinemann D, Schomaker M, Kalies S, Schieck M, Carlson R, Escobar HM, Ripken T, Meyer H, Heisterkamp A (2013) Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down. PLoS One 8(3):e58604. https://doi.org/10.1371/journal.pone.0058604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dev Kumar Chatterjeea LSF, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 50(15):1627–1637

    Article  CAS  Google Scholar 

  26. Institute NC (2011) Photodynamic therapy for cancer. National Institutes of Health. http://www.cancer.gov/cancertopics/factsheet/Therapy/photodynamic. 2013

  27. Liu TW, Huynh E, MacDonald TD, Zheng G (2014) Porphyrins for imaging, photodynamic therapy, and photothermal therapy. In: Chen X, Wong S (eds) Cancer theranostics. Academic, Oxford, pp 229–254. https://doi.org/10.1016/B978-0-12-407722-5.00014-1

    Chapter  Google Scholar 

  28. Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee S-Y, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res 62(2):57–89. https://doi.org/10.1016/j.phrs.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707. https://doi.org/10.1021/jp061667w

    Article  CAS  PubMed  Google Scholar 

  30. Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  31. Martin MN, Basham JI, Chando P, Eah SK (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26(10):7410–7417. https://doi.org/10.1021/la100591h

    Article  CAS  PubMed  Google Scholar 

  32. Bolintineanu DS, Lane JMD, Grest GS (2014) Effects of functional groups and ionization on the structure of alkanethiol-coated gold nanoparticles. Langmuir 30(37):11075–11085. https://doi.org/10.1021/la502795z

    Article  CAS  PubMed  Google Scholar 

  33. Lu Y-S, Kuo S-W (2014) Functional groups on POSS nanoparticles influence the self-assembled structures of diblock copolymer composites. RSC Adv 4(66):34849–34859. https://doi.org/10.1039/C4RA06193D

    Article  CAS  Google Scholar 

  34. CytoViva I (2015) Identifying functional groups on nanoparticles used as drug delivery agents. CytoViva

    Google Scholar 

  35. Yong WYD, Zhang Z, Cristobal G, Chin WS (2014) One-pot synthesis of surface functionalized spherical silica particles. Colloids Surf A Physicochem Eng Asp 460:151–157. https://doi.org/10.1016/j.colsurfa.2014.03.039

    Article  CAS  Google Scholar 

  36. Abbaspourrad A, Carroll NJ, Kim SH, Weitz DA (2013) Surface functionalized hydrophobic porous particles toward water treatment application. Adv Mater 25(23):3215–3221

    Article  CAS  PubMed  Google Scholar 

  37. Froimowicz P, Munoz-Espi R, Landfester L, Musyanovych A, Crespy D (2013) Surface-functionalized particles: from their design and synthesis to materials science and bio-applications. Curr Org Chem 17:900–912

    Article  CAS  Google Scholar 

  38. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48. https://doi.org/10.1016/0169-409X(95)00039-A

    Article  CAS  Google Scholar 

  39. Evrim U (2013) Surface modification of nanoparticles used in biomedical applications. In: Aliofkhazraei M (ed) Modern surface engineering treatments. InTech, Rijeka

    Google Scholar 

  40. Hsu C-L, Wang K-H, Chang C-H, Hsu W-P, Lee Y-L (2011) Surface modification of gold nanoparticles and their monolayer behavior at the air/water interface. Appl Surf Sci 257(7):2756–2763. https://doi.org/10.1016/j.apsusc.2010.10.057

    Article  CAS  Google Scholar 

  41. Li X, Guo J, Asong J, Wolfert MA, Boons G-J (2011) Multifunctional surface modification of gold-stabilized nanoparticles by bioorthogonal reactions. J Am Chem Soc 133(29):11147–11153. https://doi.org/10.1021/ja2012164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Castellanos LJ, Blanco-Tirado C, Hinestroza JP, Combariza MY (2012) In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19(6):1933–1943. https://doi.org/10.1007/s10570-012-9763-8

    Article  CAS  Google Scholar 

  43. Thanh NTK, LAW G (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  44. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc Lond A Math Phys Eng Sci 368(1915):1333–1383. https://doi.org/10.1098/rsta.2009.0273

    Article  CAS  Google Scholar 

  45. Watthanaphanit A, Panomsuwan G, Saito N (2013) In situ preparation of gold nanoparticles in alginate gel matrix by solution plasma sputtering process. MRS Online Proc Lib Arch 1569:151–155

    Google Scholar 

  46. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415. https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Joanne Manson DK, Meenan BJ (2011) Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 44:99–105

    Article  CAS  Google Scholar 

  48. Park W, Na K (2015) Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(4):494–508. https://doi.org/10.1002/wnan.1325

    Article  CAS  PubMed  Google Scholar 

  49. De Jong WH, PJA B (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364. https://doi.org/10.1002/anie.201403036

    CAS  Google Scholar 

  51. Svenson S, Prud’homme RK (eds) (2012) Multifunctional nanoparticles for drug delivery applications. Imaging, targeting, and delivery. Springer, New York, NY

    Google Scholar 

  52. Ahangari MSA (2014) Nanoparticle based drug delivery systems for treatment of infectious diseases. In: Sezer AD (ed) Nanotechnology and nanomaterials. Springer, New York, NY. CC BY 3.0 license

    Google Scholar 

  53. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141. https://doi.org/10.1016/j.jsps.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyeneth S, Nair SV, Jayakumar R (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79(4):1073–1079. https://doi.org/10.1016/j.carbpol.2009.10.038

    Article  CAS  Google Scholar 

  55. Pienaar IS, Gartside SE, Sharma P, De Paola V, Gretenkord S, Withers D, Elson JL, Dexter DT (2015) Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease. Mol Neurodegener 10(1):47. https://doi.org/10.1186/s13024-015-0044-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lee J-I (2015) The current status of deep brain stimulation for the treatment of Parkinson disease in the Republic of Korea. J Movement Dis 8(3):115–121. 10.14802/jmd.15043

    Article  Google Scholar 

  57. Fontaine D, Lazorthes Y, Mertens P, Blond S, Géraud G, Fabre N, Navez M, Lucas C, Dubois F, Gonfrier S, Paquis P, Lantéri-Minet M (2009) Safety and efficacy of deep brain stimulation in refractory cluster headache: a randomized placebo-controlled double-blind trial followed by a 1-year open extension. J Headache Pain 11(1):23–31. https://doi.org/10.1007/s10194-009-0169-4

    Article  PubMed Central  CAS  Google Scholar 

  58. Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A (2009) Deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disord 2(6):20–28. https://doi.org/10.1177/1756285609339382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dams J, Siebert U, Bornschein B, Volkmann J, Deuschl G, Oertel WH, Dodel R, Reese JP (2013) Cost-effectiveness of deep brain stimulation in patients with Parkinson’s disease. Movement Dis 28(6):763–771. https://doi.org/10.1002/mds.25407

    Article  PubMed  Google Scholar 

  60. Okun MS, Fernandez HH, Foote KD (2015) What are the risks of DBS? Center for Movement Disorders and Neurorestoration, Gainesville, FL

    Google Scholar 

  61. Davis NJ, van Koningsbruggen MG (2013) “Non-invasive” brain stimulation is not non-invasive. Front Syst Neurosci 7:76. https://doi.org/10.3389/fnsys.2013.00076

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117(4):845–850. https://doi.org/10.1016/j.clinph.2005.12.003

    Article  PubMed  Google Scholar 

  63. Anwar Y (2010) Right or left? Brain stimulation can change the hand you favor. UC Berkeley Office of Communications, Berkeley, CA

    Google Scholar 

  64. Cheromordik LV (1992) Electropores in lipid bilayers and cell membranes. In: Chass DC (ed) Guide to electropation and electrofusion. Academic, San Diego, CA, pp 63–76

    Google Scholar 

  65. Neumann E (1992) Biophsyical considerations of membrane electroporation. In: Chass DC (ed) Guide to electropation and electrofusion. Academic, San Diego, CA, pp 77–90

    Google Scholar 

  66. Chang C, Hunt JR, Zheng Q, Gao PQ (1992) Electroporation and electrofusion using a pulsed radio-frequency electric field. In: Chass DC (ed) Guide to electropation and electrofusion. Academic, San Diego, CA, pp 303–326

    Google Scholar 

  67. Andrei G, Pakhomov JF (2007) Long-lasting plasma membrane permeabilization in mammilian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  Google Scholar 

  68. Bagatolli LAPT (1999) A model for the interaction of 6-lauroyl-2-(N,N-dimethlyamino) napthalene with lipid environments; implications for spectral properties. Photochem Photobiol 70:557–564

    Article  CAS  PubMed  Google Scholar 

  69. Bunker CB (1993) A photophysical study of solvatochromic probe 6-propionyl-2-(N,N-dimethylamo) naphthalene (PRODAN) in solution. Photochem Photobiol 58:499–499

    Article  CAS  Google Scholar 

  70. Pakhomov AG (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385(2):181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bowman A (2010) Analysis of plasma membrane integrity by fluorescent detection of thallium uptake. J Membr Biol 236(1):15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raichle ME (2003) Functional Brain Imaging and Human Brain Function. J Nuerosci 23(10):3959–3962

    CAS  Google Scholar 

  73. Potts PD, Hirooka Y, Dampney RA (1999) Activation of brain neurons by circulating angiotensin II: direct effects and baroreceptor-mediated secondary effects. Neuroscience 90(2):581–594

    Article  CAS  PubMed  Google Scholar 

  74. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM (2003) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23(15):6351–6356

    CAS  PubMed  Google Scholar 

  75. Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52(2):201–243. https://doi.org/10.1016/j.brainresrev.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  76. Chambers JA, Sanei S (2008) EEG signal processing. Wiley, Hoboken, NJ

    Google Scholar 

  77. Aston-Jones G (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876

    CAS  PubMed  Google Scholar 

  78. Jiang K (2015) New technique uses light to take genetics out of optics. UChicago News, 12 Mar, 2015

    Google Scholar 

  79. Liao Y-H, Chang Y-J, Yoshiike Y, Chang Y-C, Chen Y-R (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small (Weinheim an der Bergstrasse, Germany) 8(23):3631–3639. https://doi.org/10.1002/smll.201201068

    Article  CAS  Google Scholar 

  80. Liao YH, Chang Y-J, Yoshiike Y et al (2014) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization IFD, and mitigate neurotoxicity. In: Simon H (ed) Coated nanoparticles show Alzheimer’s promise – chemistry world. Royal Society of Chemistry, London

    Google Scholar 

  81. Zhang H, Shih J, Zhu J, Kotov NA (2012) Layered nanocomposites from gold nanoparticles for neural prosthetic devices. Nano Lett 12(7):3391–3398. https://doi.org/10.1021/nl3015632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jung S, Bang M, Kim BS, Lee S, Kotov NA, Kim B, Jeon D (2014) Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One 9(3):e91360. https://doi.org/10.1371/journal.pone.0091360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Filon Larese F (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82(9):1043–1055. https://doi.org/10.1007/s00420-009-0458-x

    Article  CAS  PubMed  Google Scholar 

  84. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134(3):425–439. https://doi.org/10.1039/b818082b

    Article  CAS  PubMed  Google Scholar 

  85. Orza A, Pruneanu S, Soritau O, Borodi G, Florea A, Bâlici Ş, Matei H, Olenic L (2013) Single-step synthesis of gold nanowires using biomolecules as capping agent/template: applications for tissue engineering. Part Sci Technol 31(6):658–662. https://doi.org/10.1080/02726351.2013.831151

    Article  CAS  Google Scholar 

  86. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3(4):457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small (Weinheim an der Bergstrasse, Germany) 5(6):701–708. https://doi.org/10.1002/smll.200801546

    Article  CAS  Google Scholar 

  88. Kimball JW (2014) Endocytosis. Creative commons attribution 3.0

    Google Scholar 

  89. Saunders JA, Smith CR, Kaper JM (1989) Effects of electroporation pulse wave on the incorporation of viral RNA inot tobacco protoplasts. BioTechniques 7:1124–1131

    CAS  PubMed  Google Scholar 

  90. Benz R, Conti F (1981) Reversible electrical breakdown of squid giant axon membrane. Biochim Biophys Acta 645:115–123

    Article  CAS  PubMed  Google Scholar 

  91. Chernomordik LVSS, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev YA (1987) The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochem Biophys Acta 902:360–373

    Article  CAS  PubMed  Google Scholar 

  92. Zimmermann U (1982) Electric field mediated fusion and related electrical phenomena. Biochem Biophys Acta 694:227–277

    CAS  PubMed  Google Scholar 

  93. Van Lehn RC, Ricci M, Silva PHJ, Andreozzi P, Reguera J, Voïtchovsky K, Stellacci F, Alexander-Katz A (2014) Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nat Commun 5:4482. https://doi.org/10.1038/ncomms5482

    PubMed  Google Scholar 

  94. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56(2):150–154

    Article  CAS  Google Scholar 

  95. Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G (2007) In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core–shell nanoparticles. Int J Pharm 338(1–2):284–290. https://doi.org/10.1016/j.ijpharm.2007.01.039

    Article  CAS  PubMed  Google Scholar 

  96. Sun Y, Vernier PT, Wang J, Kuthi A, Marcu L, Gundersen MA (2005) Materials research society symposium, 2005. pp 115–120

    Google Scholar 

  97. Kocak N, Sahin M, Akin I, Kus M, Yilmaz M (2011) Microwave assisted synthesis of chitosan nanoparticles. J Macromol Sci A 48(10):776–779. https://doi.org/10.1080/10601325.2011.603613

    Article  CAS  Google Scholar 

  98. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater 69B(2):216–222. https://doi.org/10.1002/jbm.b.30000

    Article  CAS  Google Scholar 

  99. NovaMatrix (2011) Chitosan. FMC biopolymer

    Google Scholar 

  100. Gan Q, Wang T, Cochrane C, McCarron P (2005) Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces 44(2–3):65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  101. Wei D, Qian W (2006) Chitosan-mediated synthesis of gold nanoparticles by UV photoactivation and their characterization. J Nanosci Nanotechnol 6(8):2508–2514

    Article  CAS  PubMed  Google Scholar 

  102. Aldrich S (2015) Gold nanoparticles: properties and applications. Sigma-Aldrich, St. Louis, MO

    Google Scholar 

  103. Corporation P (2012) CellTiter-Glo luminescent cell viability assay tehnical bulletin, 2013

    Google Scholar 

  104. Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L (2004) Cell viability assays. In: Sittampalam GS, Nelson H et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD

    Google Scholar 

  105. Bailey MP, Rocks BF, Riley C (1983) Use of lucifer yellow VS as a label in fluorescent immunoassays illustrated by the determination of albumin in serum. Ann Clin Biochem 20(Pt 4):213–216

    Article  CAS  PubMed  Google Scholar 

  106. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hu J, Huang L, Zhuang X, Zhang P, Lang L, Chen X, Wei Y, Jing X (2008) Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells. Biomacromolecules 9(10):2637–2644. https://doi.org/10.1021/bm800705t

    Article  CAS  PubMed  Google Scholar 

  108. Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage-gated sodium channels. J Physiol 508(Pt 3):647–657. https://doi.org/10.1111/j.1469-7793.1998.647bp.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Neurons and the nervous system. http://people.eku.edu/ritchisong/301notes2.htm

  110. Gérard V, Rouzaire-Dubois B, Dilda P, Dubois JM (1998) Alterations of ionic membrane permeabilities in multidrug-resistant neuroblastoma x glioma hybrid cells. J Exp Biol 201(Pt 1):21–31

    PubMed  Google Scholar 

  111. Genlantis mammalian cells-CHO0K1. http://www.biocat.com/bc/pdf/C5021_2_00_Expresso%20Mammalian%20Cells%20CHO-K1_VKM080121.pdf

  112. Tao Sun LL, Huang Q (2011) Research of neuron growth prediction and influence of its geometric configuration. Appl Math 2:904–907

    Article  Google Scholar 

  113. Villiers C, Freitas H, Couderc R, Villiers M-B, Marche P (2010) Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 12(1):55–60. https://doi.org/10.1007/s11051-009-9692-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Savina A, Amigorena S (2007) Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 219:143–156. https://doi.org/10.1111/j.1600-065X.2007.00552.x

    Article  CAS  PubMed  Google Scholar 

  115. Capco DG, Yongsheng C (eds) (2014) Nanomaterial. Impacts on cell biology and medicine, 1st edn. Springer, Dordrecht

    Google Scholar 

  116. Krpeti Z (2014) Nanomaterials: impact on cells and cell organelles. In: Capco DG, Yongsheng C (eds) Nanomaterial. Impacts on cell biology and medicine, 1st edn. Springer, Dordrecht, pp 135–156

    Google Scholar 

  117. Nesin OM (1808) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta Biomembr 3:792–801

    Google Scholar 

  118. Thompson GL, Roth CC, Dalzell DR, Kuipers M, Ibey BL (2014) Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure. J Biomed Opt 19(5):055005. https://doi.org/10.1117/1.jbo.19.5.055005

    Article  PubMed  CAS  Google Scholar 

  119. Freese C, Uboldi C, Gibson M, Unger R, Weksler B, Romero I, Couraud P-O, Kirkpatrick C (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Malugin A, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30(3):212–217. https://doi.org/10.1002/jat.1486

    PubMed  Google Scholar 

  121. Yang A, Jie Z, Tao K, Xiaoping W, Roa W, El-Bialy T, Xing J, Jie C The effect of surface properties of gold nanoparticles on cellular uptake. In: Life science systems and applications workshop, 2007. LISA 2007. IEEE/NIH, 8–9 Nov 2007, pp 92–95. doi:https://doi.org/10.1109/LSSA.2007.4400892

Download references

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under grant numbers. FA9550-15-1-0109 and FA9550-15-1-0513. The authors would like to thank Dr. Jody Cantu for assistance with electroporation experiments and Dr. German Plascencia-Villa for assistance with electron microscopy of the cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly L. Nash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Franklin, S.K., Vincent, B., Tek, S., Nash, K.L. (2018). Influence of External Electrical Stimulation on Cellular Uptake of Gold Nanoparticles. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics