Skip to main content

Studying the Role of AMPK in Angiogenesis

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

The role of AMPK in angiogenesis can be studied using in vitro and in vivo assays. The endothelial spheroid assay is a robust three-dimensional in vitro test, which allows investigation of tubular morphogenesis by integrating cell-cell as well as cell-matrix interactions. The Matrigel plug assay validates the process of angiogenesis in vivo and allows studies in genetically modified mice. Here, we give a detailed description of both assays and their application in AMPK research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105(2):114–127. https://doi.org/10.1161/CIRCRESAHA.109.201590

    Article  CAS  PubMed  Google Scholar 

  2. Stahmann N, Woods A, Spengler K, Heslegrave A, Bauer R, Krause S, Viollet B, Carling D, Heller R (2010) Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem 285(14):10638–10652. https://doi.org/10.1074/jbc.M110.108688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Youn JY, Wang T, Cai H (2009) An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production. Circ Res 104(1):50–59. https://doi.org/10.1161/CIRCRESAHA.108.178467

    Article  CAS  PubMed  Google Scholar 

  4. Zibrova D, Vandermoere F, Goransson O, Peggie M, Marino KV, Knierim A, Spengler K, Weigert C, Viollet B, Morrice NA, Sakamoto K, Heller R (2017) GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 474(6):983–1001. https://doi.org/10.1042/BCJ20160980

    Article  CAS  PubMed  Google Scholar 

  5. Irvin MW, Zijlstra A, Wikswo JP, Pozzi A (2014) Techniques and assays for the study of angiogenesis. Exp Biol Med 239(11):1476–1488. https://doi.org/10.1177/1535370214529386

    Article  Google Scholar 

  6. Korff T, Augustin HG (1998) Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 143(5):1341–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(Pt 19):3249–3258

    CAS  PubMed  Google Scholar 

  8. Bayless KJ, Davis GE (2003) Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 312(4):903–913

    Article  CAS  PubMed  Google Scholar 

  9. Carnevale E, Fogel E, Aplin AC, Gelati M, Howson KM, Zhu WH, Nicosia RF (2007) Regulation of postangiogenic neovessel survival by beta1 and beta3 integrins in collagen and fibrin matrices. J Vasc Res 44(1):40–50. https://doi.org/10.1159/000097976

    Article  CAS  PubMed  Google Scholar 

  10. Heiss M, Hellstrom M, Kalen M, May T, Weber H, Hecker M, Augustin HG, Korff T (2015) Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J 29(7):3076–3084. https://doi.org/10.1096/fj.14-267633

    Article  CAS  PubMed  Google Scholar 

  11. Nakatsu MN, Hughes CC (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82. https://doi.org/10.1016/S0076-6879(08)02004-1

    Article  CAS  PubMed  Google Scholar 

  12. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Investig 67(4):519–528

    CAS  PubMed  Google Scholar 

  13. Malinda KM (2001) In vivo matrigel migration and angiogenesis assays. Methods Mol Med 46:47–52. https://doi.org/10.1385/1-59259-143-4:047

    CAS  PubMed  Google Scholar 

  14. Staton CA, Reed MW, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90(3):195–221. https://doi.org/10.1111/j.1365-2613.2008.00633.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adini A, Fainaru O, Udagawa T, Connor KM, Folkman J, D’Amato RJ (2009) Matrigel cytometry: a novel method for quantifying angiogenesis in vivo. J Immunol Methods 342(1-2):78–81. https://doi.org/10.1016/j.jim.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  16. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S (2003) The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111(1):91–98. https://doi.org/10.1172/JCI16567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF (2004) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079. https://doi.org/10.1074/jbc.M306205200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spengler, K., Große, S., Kryeziu, N., Knierim, A., Heller, R. (2018). Studying the Role of AMPK in Angiogenesis. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics