Skip to main content

Telomere Length Analysis: A Tool for Dissecting Aging Mechanisms in Developmental Programming

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Accelerated cellular aging is known to play an important role in the etiology of phenotypes associated with developmental programming, such as cardiovascular disease and type 2 diabetes. Telomere length analysis is a powerful tool to quantify cellular aging. Here we describe a telomere length methodology, refined to quantify discrete telomere length fragments. We have shown this method to be more sensitive in detecting small changes in telomere length than the traditional average telomere length comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM (1993) Type 2 (non-insulin dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to fetal growth. Diabetes 36:62–67

    CAS  Google Scholar 

  3. Fall CHD, Osmond C, Barker DJP, Clark PMS, Hales CN, Stirling Y et al (1995) Fetal and infant growth and cardiovascular risk factors in women. BMJ 310:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tarry-Adkins JL, Ozanne SE (2011) Mechanisms of early life programming: current knowledge and future directions. Am J Clin Nutr 94:1765S–1771S

    Article  CAS  PubMed  Google Scholar 

  5. Tarry-Adkins JL, Ozanne SE (2017) Nutrition in early life and age-associated diseases. Ageing Res Rev 39:96–105

    Article  CAS  PubMed  Google Scholar 

  6. Blackburn EH (1984) The molecular structure of centromeres and telomeres. Annu Rev Biochem 53:163–194

    Article  CAS  PubMed  Google Scholar 

  7. Olovnikov AM (1996) Telomeres, telomerase and aging: origin of the theory. Exp Gerontol 31:443–448

    Article  CAS  PubMed  Google Scholar 

  8. von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 908:99–110

    Article  Google Scholar 

  9. Sharpless NE, de Pinto RA (2004) Telomeres, stem cells, senescence and cancer. J Clin Invest 113:160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenart P, Krejci L (2016) DNA, the central molecule of aging. Mutat Res 786:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    Article  CAS  PubMed  Google Scholar 

  12. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 13:611–622

    Article  Google Scholar 

  13. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P (2014) Leucocyte telomere length and risk of cardiovascular disease: systemic review and meta-analysis. BMJ 349:g4227. https://doi.org/10.1136/bmj.g4227

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao J, Miao K, Wang H, Ding H, Wang DW (2013) Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS One 8:e79993. https://doi.org/10.1371/journal.pone.0079993

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cawthorn RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395

    Article  Google Scholar 

  16. Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P (2012) Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A 109:1743–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nussey DH, Baird D, Barrett E, Boner W, Fairlie J, Gemmell N et al (2014) Measuring telomere length and telomere dynamics in evolutionary biology and ecology. Methods Ecol Evol 5:299–310

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cherif C, Tarry JL, Ozanne SE, Hales CN (2003) Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acid Res 31:1576–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tarry-Adkins JL, Joles JA, Chen JH, Martin-Gronert MS, van der Giezen DM, Goldschmeding R et al (2007) Protein restriction in lactation confers nephroprotective effects in the male rat and is associated with increased antioxidant expression. Am J Physiol Regul Integr Comp Physiol 293:R1259–R1266

    Article  CAS  PubMed  Google Scholar 

  20. Tarry-Adkins JL, Martin-Gronert MS, Chen JH, Cripps RL, Ozanne SE (2008) Maternal diet influences DNA damage, aortic telomere length, oxidative stress and antioxidant capacity in rats. FASEB J 22:2037–2044

    Article  CAS  PubMed  Google Scholar 

  21. Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H, Ozanne SE (2009) Poor maternal nutrition followed by accelerated catch up growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J 23:1521–1528

    Article  CAS  PubMed  Google Scholar 

  22. Aiken CE, Tarry-Adkins JL, Ozanne SE (2013) Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J 27:3959–3965

    Article  CAS  PubMed  Google Scholar 

  23. Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are members of the University of Cambridge MRC Metabolic Disease Unit and are funded by the UK Medical Research Council (MC UU12012/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Ozanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tarry-Adkins, J.L., Ozanne, S.E. (2018). Telomere Length Analysis: A Tool for Dissecting Aging Mechanisms in Developmental Programming. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics