Skip to main content

Predicting Gene Expression Noise from Gene Expression Variations

  • Protocol
  • First Online:
Transcriptome Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

Abstract

The level of gene expression is known to vary from cell to cell and even in the same cell over time. This variability provides cells with the ability to mitigate environmental stresses and genetic perturbations, and facilitates gene expression evolution. Recently, many valuable gene expression noise data measured at the single-cell level and gene expression variation measured for cell populations have become available. In this chapter, we show how to perform integrative analysis using these data. Specifically, we introduce how to apply a machine learning technique (support vector regression) to explore the relationship between gene expression variations and stochastic noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raser JM, O'Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309(5743):2010–2013. https://doi.org/10.1126/science.1105891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699–709

    Article  CAS  PubMed  Google Scholar 

  3. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420(6912):231–237. https://doi.org/10.1038/nature01258

    Article  CAS  PubMed  Google Scholar 

  4. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451–464. https://doi.org/10.1038/nrg1615

    Article  CAS  PubMed  Google Scholar 

  5. Karmakar R, Bose I (2004) Graded and binary responses in stochastic gene expression. Phys Biol 1(3-4):197–204. https://doi.org/10.1088/1478-3967/1/4/001

    Article  CAS  PubMed  Google Scholar 

  6. Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 102(5):1572–1577. https://doi.org/10.1073/pnas.0408709102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568):752–755. https://doi.org/10.1126/science.1069516

    Article  CAS  PubMed  Google Scholar 

  8. Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20(6):955–963. https://doi.org/10.1093/molbev/msg106

    Article  CAS  PubMed  Google Scholar 

  9. Tirosh I, Weinberger A, Bezalel D, Kaganovich M, Barkai N (2008) On the relation between promoter divergence and gene expression evolution. Mol Syst Biol 4:159. https://doi.org/10.1038/msb4100198

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wolf L, Silander OK, van Nimwegen E (2015) Expression noise facilitates the evolution of gene regulation. Elife 4. https://doi.org/10.7554/eLife.05856

  11. Charlebois DA (2015) Effect and evolution of gene expression noise on the fitness landscape. Phys Rev E 92(2):022713. https://doi.org/10.1103/PhysRevE.92.022713

    Article  Google Scholar 

  12. Lehner B (2008) Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol Syst Biol 4:170. https://doi.org/10.1038/msb.2008.11

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Qian W, Zhang J (2009) Positive selection for elevated gene expression noise in yeast. Mol Syst Biol 5:299. https://doi.org/10.1038/msb.2009.58

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. https://doi.org/10.1126/science.1070919

    Article  CAS  PubMed  Google Scholar 

  15. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405(6786):590–593. https://doi.org/10.1038/35014651

    Article  CAS  PubMed  Google Scholar 

  16. Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307(5717):1965–1969. https://doi.org/10.1126/science.1109090

    Article  CAS  PubMed  Google Scholar 

  17. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441(7095):840–846. https://doi.org/10.1038/nature04785

    Article  CAS  PubMed  Google Scholar 

  18. Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, Pesce CG, Brent R (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437(7059):699–706. https://doi.org/10.1038/nature03998

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez A, Golding I (2013) Genetic determinants and cellular constraints in noisy gene expression. Science 342(6163):1188–1193. https://doi.org/10.1126/science.1242975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415–418. https://doi.org/10.1038/nature02257

    Article  CAS  PubMed  Google Scholar 

  21. Kumar N, Platini T, Kulkarni RV (2014) Exact distributions for stochastic gene expression models with bursting and feedback. Phys Rev Lett 113(26):268105. https://doi.org/10.1103/PhysRevLett.113.268105

    Article  PubMed  Google Scholar 

  22. Singh A, Soltani M (2013) Quantifying intrinsic and extrinsic variability in stochastic gene expression models. PLoS One 8(12):e84301. https://doi.org/10.1371/journal.pone.0084301

    Article  PubMed  PubMed Central  Google Scholar 

  23. Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2(2):157–175. https://doi.org/10.1016/j.plrev.2005.03.003

    Article  Google Scholar 

  24. Sanchez A, Kondev J (2008) Transcriptional control of noise in gene expression. Proc Natl Acad Sci U S A 105(13):5081–5086. https://doi.org/10.1073/pnas.0707904105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng XD, Tao Y (2011) Stochastic analysis of gene expression. Methods Mol Biol 734:123–151. https://doi.org/10.1007/978-1-61779-086-7_7

    Article  CAS  PubMed  Google Scholar 

  26. Gui R, Liu Q, Yao Y, Deng H, Ma C, Jia Y, Yi M (2016) Noise decomposition principle in a coherent feed-forward transcriptional regulatory loop. Front Physiol 7:600. https://doi.org/10.3389/fphys.2016.00600

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31(4):370–377. https://doi.org/10.1038/ng941

    Article  CAS  PubMed  Google Scholar 

  28. Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18(7):1084–1091. https://doi.org/10.1101/gr.076059.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic properties influencing the evolvability of gene expression. Science 317(5834):118–121. https://doi.org/10.1126/science.1140247

    Article  CAS  PubMed  Google Scholar 

  31. Gagneur J, Sinha H, Perocchi F, Bourgon R, Huber W, Steinmetz LM (2009) Genome-wide allele- and strand-specific expression profiling. Mol Syst Biol 5:274. https://doi.org/10.1038/msb.2009.31

    Article  PubMed  PubMed Central  Google Scholar 

  32. Steinfeld I, Shamir R, Kupiec M (2007) A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription. Nat Genet 39(3):303–309. https://doi.org/10.1038/ng1965

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683–687. https://doi.org/10.1038/ng2012

    Article  CAS  PubMed  Google Scholar 

  34. Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. https://doi.org/10.1023/B:Stco.0000035301.49549.88

    Article  Google Scholar 

  35. Deng N, Tian Y, Zhang C (2012) Support vector machines: optimization based theory, algorithms, and extensions. Chapman and Hall/CRC, London

    Google Scholar 

  36. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM T Intel Syst Tec 2(3). https://doi.org/10.1145/1961189.1961199

  37. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, NY

    Book  Google Scholar 

  38. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389–422. https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  39. Dong D, Shao X, Deng N, Zhang Z (2011) Gene expression variations are predictive for stochastic noise. Nucleic Acids Res 39(2):403–413. https://doi.org/10.1093/nar/gkq844

    Article  CAS  PubMed  Google Scholar 

  40. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44(1):1–12. https://doi.org/10.1021/ci0342472

    Article  CAS  PubMed  Google Scholar 

  41. Tetko IV, Livingstone DJ, Luik AI (1995) Neural-network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci 35(5):826–833. https://doi.org/10.1021/Ci00027a006

    Article  CAS  Google Scholar 

  42. Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinformatics 2015:198363. https://doi.org/10.1155/2015/198363

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Ding C, Li T (2008) Gene selection algorithm by combining reliefF and mRMR. BMC Genomics 9(Suppl 2):S27. https://doi.org/10.1186/1471-2164-9-S2-S27

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205

    Article  CAS  PubMed  Google Scholar 

  45. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  46. Li J, Min R, Vizeacoumar FJ, Jin K, Xin X, Zhang Z (2010) Exploiting the determinants of stochastic gene expression in Saccharomyces cerevisiae for genome-wide prediction of expression noise. Proc Natl Acad Sci U S A 107(23):10472–10477. https://doi.org/10.1073/pnas.0914302107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226. https://doi.org/10.1016/j.cell.2008.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458(7236):362–366. https://doi.org/10.1038/nature07667

    Article  CAS  PubMed  Google Scholar 

  49. Choi JK, Kim YJ (2009) Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet 41(4):498–503. https://doi.org/10.1038/ng.319

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shao, X., Sun, Ma. (2018). Predicting Gene Expression Noise from Gene Expression Variations. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics