Skip to main content

High-Content Reporter Assays

  • Protocol
  • First Online:
Reporter Gene Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1755))

Abstract

While luminescent reporter gene assays allow for a rapid and relatively interference free assessment of the activation state of a luminescent reporter, fluorescent reporters do not. They suffer from artifacts such as compound fluorescence and cellular debris which makes the assessment of whole well fluorescence signals difficult. However, the use of high-content screening allows for the isolation of individual cells, segmentation and thus enables the screener to utilize fluorescent reporters to assess the activation state of such a high-content reporter on a cell by cell level, thus minimizing artifacts. Here we discuss the use of such a high-content reporter that enables screening for compounds useful for HIV reactivation on Jurkat cells with high-content screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naylor LH (1999) Reporter gene technology: the future looks bright. Biochem Pharmacol 58:749–757

    Article  CAS  Google Scholar 

  2. Fabio Gasparri AG (2010) Image-based high-content reporter assays: limitations and advanatages. Drug Discov Today Technol 7(1):21–30

    Article  Google Scholar 

  3. Inada A, Nienaber C, Bonner-Weir S (2006) Endogenous beta-galactosidase expression in murine pancreatic islets. Diabetologia 49(5):1120–1122

    Article  CAS  Google Scholar 

  4. Tannous BA et al (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11(3):435–443

    Article  CAS  Google Scholar 

  5. Hall MP et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857

    Article  CAS  Google Scholar 

  6. Thorne N et al (2012) Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem Biol 19(8):1060–1072

    Article  CAS  Google Scholar 

  7. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  8. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    Article  CAS  Google Scholar 

  9. Megley CM, Dickson LA, Maddalo SL, Chandler GJ, Zimmer M (2009) Photophysics and dihedral freedom of the chomophore in yellow, blue and green fluorescent protein. J Phys Chem 113:302–308

    Article  CAS  Google Scholar 

  10. Tavaré JM, Fletcher LM, Welsh GI (2001) Using green fluorescent protein to study intracellular signaling. J Endocrinol 170:297–306

    Article  Google Scholar 

  11. Yu H, West M, Keon BH, Bilter GK, Owens S, Lamerdin J, Westwick JK (2003) Measuring drug action in the cellular context using protein-fragment complementation assays. Assay Drug Dev Technol 1(6):811–822

    Article  CAS  Google Scholar 

  12. Patrick Condreay J, Witherspoon SM, Clay WC, Kost TA (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculorvirus vector. Proc Natl Acad Sci U S A 96:127–132

    Article  Google Scholar 

  13. Wolff M, Wiedenmann J, Nienhaus GU, Valler M, Heilker R (2006) Novel fluorescent proteins for high-content screening. Drug Discov Today 11:1054–1060

    Article  CAS  Google Scholar 

  14. Unterreiner V, Ibig-Rehm Y, Simonen M, Gubler H, Gabriel D Comparison of variability and sensitivity between nuclear translocation and luciferase reporter gene assays. J Biomol Screen 2009, 14:59–65

    Article  CAS  Google Scholar 

  15. Kingston RE, Chen CA, Okayama H, Rose JK (2003) Transfection of DNA into eukaryotic cells. In: Current protocols in molecular biology. John Wiley & Sons, New York

    Google Scholar 

  16. Pearson R, Kim YK, Hokello J, Lassen K, Friedman J, Tyagi M, Karn J (2008) Epigenetic silencing of human immunodeficiencty virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol 82(24):12297–12303

    Article  Google Scholar 

  17. Barton KM, Archin NM, Keedy KS, Espeseth AS, Zhang YL, Gale J, Wagner FF, Holson EB, Margolis DM (2004) Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLOS 9(8):1–11

    Google Scholar 

  18. Rasmussen TA, Tolstrup M, Winckelmann A, Østergaard L, Søgaard OS (2013) Eliminating the latent HIV reservoir by reactivation strategies. Hum Vaccin Immunother 9:790–799

    Article  CAS  Google Scholar 

  19. Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E (2013) Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 21(6):277–285

    Article  CAS  Google Scholar 

  20. Sundquist WI, Krausslich H-G (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2:1–24

    Article  Google Scholar 

  21. Frankel AD, Young JAT (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Tudor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cook, E., Hermes, J., Li, J., Tudor, M. (2018). High-Content Reporter Assays. In: Damoiseaux, R., Hasson, S. (eds) Reporter Gene Assays. Methods in Molecular Biology, vol 1755. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7724-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7724-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7722-2

  • Online ISBN: 978-1-4939-7724-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics