Skip to main content

Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing

  • Protocol
  • First Online:
Cell-Based Microarrays

Abstract

Biomolecule microarrays are generally produced by conventional microarrayer, i.e., by contact or inkjet printing. Microcontact printing represents an alternative way of deposition of biomolecules on solid supports but even if various biomolecules have been successfully microcontact printed, the production of biomolecule microarrays in routine by microcontact printing remains a challenging task and needs an effective, fast, robust, and low-cost automation process. Here, we describe the production of biomolecule microarrays composed of extracellular matrix protein for the fabrication of cell microarrays by using an automated microcontact printing device. Large scale cell microarrays can be reproducibly obtained by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruiz SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3:168–177

    Article  CAS  Google Scholar 

  2. Lange SA, Benes V, Kern DP, Hörber H, Bernard A (2004) Microcontact printing of DNA molecules. Anal Chem 76:1641–1647

    Article  CAS  Google Scholar 

  3. Thibault C, Le Berre V, Casimirius S, Trévisiol E, François JM, Vieu C (2005) Direct microcontact printing of oligonucleotides for biochip applications. J Nanobiotechnol 3:7

    Article  CAS  Google Scholar 

  4. Fredonnet J, Foncy J, Cau JC, Séverac C, François JM, Trévisiol E (2016) Automated and multiplexed soft lithography for the production of low-density DNA microarrays. Microarrays 5:25

    Article  Google Scholar 

  5. Voskuhl J, Brinkmann J, Jonkheijm P (2014) Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Curr Opin Chem Biol 18:1–7

    Article  CAS  Google Scholar 

  6. Bernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H (1998) Printing patterns of proteins. Langmuir 14:2225–2229

    Article  CAS  Google Scholar 

  7. Renaud JP, Bernard A, Bietsch A, Michel B, Bosshard HR, Delamarche E (2003) Fabricating arrays of single protein molecules on glass using microcontact printing. J Phys Chem B 108:703–711

    Google Scholar 

  8. Ricoult SG, Nezhad AS, Knapp-Mohammady M, Kennedy TE, Juncker D (2014) Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces. Langmuir 30:12002–12010

    Article  CAS  Google Scholar 

  9. Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416

    Article  CAS  Google Scholar 

  10. Sin MLY, Mach KE, Wong PK, Liao JC (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 14:225–244

    Article  CAS  Google Scholar 

  11. Shen K, Thomas VK, Dustin ML, Kam LC (2008) Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc Natl Acad Sci U S A 105:7791–7796

    Article  CAS  Google Scholar 

  12. Fritz M, Bastmeyer M (2013) Microcontact printing of substrate-bound protein patterns for cell and tissue culture. Methods Mol Biol 1018:247–259

    Article  CAS  Google Scholar 

  13. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  Google Scholar 

  14. Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H, Filhol O, Théry M (2012) Spatial organization of extracellular matrix regulates cell-cell junction positioning. Proc Natl Acad Sci U S A 109:1506–1511

    Article  CAS  Google Scholar 

  15. Gao L, McBeath R, Chen CS (2010) Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28:564–572

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 25:91–103

    Article  Google Scholar 

  17. Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  Google Scholar 

  18. Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185:779–786

    Article  CAS  Google Scholar 

  19. Desai RA, Gao L, Raghavan S, Liu WF, Chen CS (2009) Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122:905–911

    Article  CAS  Google Scholar 

  20. Théry M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18:648–657

    Article  Google Scholar 

  21. Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE (2002) Directional control of lamellipodia extension by constraining cell shape and orientating cell tractional forces. FASEB J 16(10):1195–1204

    Article  CAS  Google Scholar 

  22. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376

    Article  CAS  Google Scholar 

  23. Brock A, Chang E, Ho CC, LeDuc P, Jiang X, Whitesides GM, Ingber DE (2003) Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19:1611–1617

    Article  CAS  Google Scholar 

  24. Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 15:305–313

    Article  Google Scholar 

  25. Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123:4201–4213

    Article  Google Scholar 

  26. James J, Goluch ED, Hu H, Mrksich M (2008) Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil Cytoskeleton 65:841–852

    Article  Google Scholar 

  27. Cau JC, Lafforgue L, Nogues M, Lagraulet A, Paveau V (2013) Magnetic field assisted microcontact printing: a new concept of fully automated and calibrated process. Microelectron Eng 110:207–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the national research agency “LABCOM” program (ANR-13-LAB2-0009-01) and partly supported by LAAS CNRS micro and nanotechnology facilities platform (member of the French RENATECH network). We thank Charline Blatché for her assistance in the cell microarray fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Trévisiol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foncy, J. et al. (2018). Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing. In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7792-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7792-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics