Skip to main content

Construction and Integration of a Synthetic MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Basic biological research and biomedical applications often require studying the multiple interactions between genes or proteins while multiplex RNA interference (RNAi) technology is still challenging in mammalian cells. In mammalian genomes, the natural microRNA (miRNA) clusters, of which the miRNAs often share similar expression patterns and target diverse genes, would provide a potential multiplex RNAi scaffold. Based on the natural pri-miR-155 precursor, we have developed and characterized a multiplex RNAi method by engineering synthetic miRNA clusters, among which the maturation and function of individual miRNA precursors are independent of their positions in the cluster. And the synthetic miRNA clusters are assembled by an efficient hierarchical Golden-Gate cloning method. Here, we describe the design rules and the hierarchical cloning methods to construct synthetic miRNA cluster, and the brief protocol for the integration of synthetic miRNA clusters into the mammalian genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  2. Huttlin EL, Bruckner RJ, Paulo JA et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545:505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kemp S, Wei H-M, Lu J-F et al (1998) Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat Med 4:1261–1268

    Article  CAS  PubMed  Google Scholar 

  4. Loscalzo J, Kohane I, Barabasi A-L (2007) Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3:124

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hu JX, Thomas CE, Brunak S (2016) Network biology concepts in complex disease comorbidities. Nat Rev Genet 17:615–629

    Article  CAS  PubMed  Google Scholar 

  6. Luo J, Emanuele MJ, Li D et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mann KM, Ying H, Juan J et al (2016) KRAS-related proteins in pancreatic cancer. Pharmacol Ther 168:29–42

    Article  CAS  PubMed  Google Scholar 

  8. Gill H, Leung AYH, Kwong Y-L (2016) Molecularly targeted therapy in acute myeloid leukemia. Future Oncol 12:827–838

    Article  CAS  PubMed  Google Scholar 

  9. Martin SE, Jones TL, Thomas CL et al (2007) Multiplexing siRNAs to compress RNAi-based screen size in human cells. Nucleic Acids Res 35:e57

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mcintyre GJ, Yu Y-H, Tran A et al (2009) Cassette deletion in multiple shRNA lentiviral vectors for HIV-1 and its impact on treatment success. Virol J 6:184

    Article  PubMed  PubMed Central  Google Scholar 

  11. Applegate TL, Birkett DJ, Mcintyre GJ et al (2010) In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy. Retrovirology 7:83

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu YP, Haasnoot J, Berkhout B (2007) Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 35:5683–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sano M, Li H, Nakanishi M et al (2008) Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther 16:170–177

    Article  CAS  PubMed  Google Scholar 

  14. Saayman SM, Arbuthnot P, Weinberg MS (2010) Effective pol III-expressed long hairpin RNAs targeted to multiple unique sites of HIV-1. Methods Mol Biol 629:159–174

    PubMed  Google Scholar 

  15. Weinberg MS, Ely A, Barichievy S et al (2007) Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Mol Ther 15:534–541

    Article  CAS  PubMed  Google Scholar 

  16. Liu YP, Haasnoot J, ter Brake O et al (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 36:2811–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aagaard LA, Zhang J, von Eije KJ et al (2008) Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 15:1536–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Israsena N, Supavonwong P, Ratanasetyuth N et al (2009) Inhibition of rabies virus replication by multiple artificial microRNAs. Antivir Res 84:76–83

    Article  CAS  PubMed  Google Scholar 

  19. ter Brake O, Berkhout B (2005) A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. J RNAi Gene Silencing 1:56–65

    PubMed  PubMed Central  Google Scholar 

  20. Chung K-H, Hart CC, Al-Bassam S et al (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 34:e53

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang T, Xie Y, Tan A et al (2016) Construction and characterization of a synthetic MicroRNA cluster for multiplex RNA interference in mammalian cells. ACS Synth Biol 5:1193–1200

    Article  CAS  PubMed  Google Scholar 

  22. Gong W, Ren Y, Zhou H et al (2008) siDRM: an effective and generally applicable online siRNA design tool. Bioinformatics 24:2405–2406

    Article  CAS  PubMed  Google Scholar 

  23. Ren Y, Gong W, Zhou H et al (2009) siRecords: a database of mammalian RNAi experiments and efficacies. Nucleic Acids Res 37:D146–D149

    Article  CAS  PubMed  Google Scholar 

  24. Snøve O, Nedland M, Fjeldstad SH et al (2004) Designing effective siRNAs with off-target control. Biochem Biophys Res Commun 325:769–773

    Article  PubMed  Google Scholar 

  25. Gabant P, Szpirer CY, Couturier M et al (1998) Direct selection cloning vectors adapted to the genetic analysis of gram-negative bacteria and their plasmids. Gene 207:87–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of Xie lab for helpful discussions and useful suggestions. The research is supported by National Natural Science Foundation of China, NO: 31471255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, T., Xie, Z. (2018). Construction and Integration of a Synthetic MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics