Skip to main content

Adipose-Derived Stromal Vascular Fraction Cells and Platelet-Rich Plasma: Basic and Clinical Implications for Tissue Engineering Therapies in Regenerative Surgery

  • Protocol
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1773))

Abstract

Cell-based therapy and regenerative medicine offer a paradigm shift in regard to various diseases causing loss of substance or volume and tissue or organ damage. Recently, many authors have focused their attention on mesenchymal stem cells for their capacity to differentiate into many cell lineages. The most widely studied types are bone marrow mesenchymal stem cells and adipose derived stem cells (ADSCs), which display similar results. Based on the literature, we believe that the ADSCs offer advantages because of lower morbidity during the harvesting procedure. Additionally, platelet-rich plasma can be used in this field for its ability to stimulate tissue regeneration. The aim of this chapter is to describe ADSC preparation and isolation procedures, preparation of platelet-rich plasma, and the application of ADSCs in regenerative plastic surgery. We also discuss the mechanisms and future role of ADSCs in cell-based therapy and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz AJ, Tholpady A, Tholpady SS et al (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hA-DAS) cells. Stem Cells 23:412–423

    Article  CAS  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  4. Lin K, Matsubara Y, Masuda Y et al (2008) Characterization of adipose tissue-derived cells isolated with the Celution™ system. Cytotherapy 10:417–426

    Article  CAS  PubMed  Google Scholar 

  5. Corselli M, Chen CW, Sun B et al (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308

    Article  CAS  PubMed  Google Scholar 

  6. Schipper BM, Marra KG, Zhang W et al (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levi B, James AW, Glotzbach JP et al (2010) Depot-specific variation in the osteogenic and adipogenic potential of human adipose-derived stromal cells. Plast Reconstr Surg 126:822–834

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Malladi P, Wagner DR et al (2005) Adiposederived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther 7:300–305

    PubMed  Google Scholar 

  9. Aksu AE, Rubin JP, Dudas JR et al (2008) Role of gender and anatomical region on induction of osteogenic differentiation of human adiposederived stem cells. Ann Plast Surg 60:306–322

    Article  CAS  PubMed  Google Scholar 

  10. De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  11. Jeon ES, Song HY, Kim MR et al (2006) Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res 47:653–664

    Article  CAS  PubMed  Google Scholar 

  12. Kang YJ, Jeon ES, Song HY et al (2005) Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 95:1135–1145

    Article  CAS  PubMed  Google Scholar 

  13. Song HY, Jeon ES, Jung JS et al (2005) Oncostatin M induces proliferation of human adipose tissue-derived mesenchymal stem cells. Int J Biochem Cell Biol 37:2357–2365

    Article  CAS  PubMed  Google Scholar 

  14. Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419

    Article  CAS  PubMed  Google Scholar 

  15. Jun ES, Lee TH, Cho HH et al (2004) Expression of telomerase extends longevity and enhances differentiation in human adipose tissue-derived stromal cells. Cell Physiol Biochem 14:261–268

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, Crisostomo P, Herring C et al (2006) Human progenitor cells from bone marrow or adipose tissue produce VEGF, Hgf, and IGF-1 in response to Tnf by a p38 mitogen activated protein kinase dependent mechanism. Am J Physiol Regul Integr Comp Physiol 291:R880–R884

    Article  CAS  PubMed  Google Scholar 

  17. Kevy SV, Jacobson MS (2004) Comparison of methods for point of care preparation of autologous platelet gel. J Extra Corpor Technol 36:28–35

    PubMed  Google Scholar 

  18. Siebrecht MA, De Rooij PP, Arm DM et al (2002) Platelet concentrate increases bone ingrowth into porous hydroxyapatite. Orthopedics 25:169–172

    PubMed  Google Scholar 

  19. Waters JH, Roberts KC (2004) Database review of possible factors influencing point-of-care platelet gel manufacture. J Extra Corpor Technol 36:250

    PubMed  Google Scholar 

  20. Man D, Plosker H, Winland-Brown JE (2001) The use of autologous platelet-rich plasma (platelet gel) and autologous platelet-poor plasma (fibrin glue) in cosmetic surgery. Plast Reconstr Surg 107:229

    Article  CAS  PubMed  Google Scholar 

  21. Marlovits S, Mousavi M, Gabler C et al (2004) A new simplified technique for producing platelet-rich plasma: a short technical note. Eur Spine J 13(suppl 1):S102–S106

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lozada JL, Caplanis N, Proussaefs P et al (2001) Platelet-rich plasma application in sinus graft surgery: part I. Background and processing techniques. J Oral Implantol 27:38

    Article  CAS  PubMed  Google Scholar 

  23. Hood AG, Arm DM. Topical application of autogenous tissue growth factors for augmentation of structural bone graft fusion. Paper presented at: American Society of Extra-Corporeal Technology 11th annual symposium on new advances in blood management, 20–23 Apr 2004, Las Vegas, NV

    Google Scholar 

  24. Mazzucco L, Balbo V, Cattana E et al (2009) Not every PRP-gel is born equal. Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet, RegenPRPKit, Plateltex and one manual procedure. Vox Sang 97:110–118

    Article  CAS  PubMed  Google Scholar 

  25. Yu G, Floyd E, Wu X et al (2011) Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol 702:17–27

    Article  CAS  PubMed  Google Scholar 

  26. Cervelli V, Gentile P, De Angelis B et al (2011) Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in posttraumatic lower extremity ulcers. Stem Cell Res 6:103–111

    Article  PubMed  Google Scholar 

  27. Rigotti G, Marchi A, Galie M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422

    Article  CAS  PubMed  Google Scholar 

  28. Yoshimura K, Sato K, Aoi N et al (2008) Cellassisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg 32:48–55

    Article  Google Scholar 

  29. Lendeckel S, Jodicke A, Christophis P et al (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32:370–373

    Article  PubMed  Google Scholar 

  30. García-Olmo D, García-Arranz M, García LG et al (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423

    Article  PubMed  Google Scholar 

  31. Cervelli V, Gentile P, Scioli MG et al (2009) Application of platelet-rich plasma to fat grafting during plastic surgical procedures: clinical and in vitro evaluation. Tissue Eng Part C 15:625–634

    Article  CAS  Google Scholar 

  32. Anitua E, Sa’nchez M, Nurden AT et al (2006) Autologous fibrin matrices: a potential source of biological mediators that modulate tendon cell activities. J Biomed Mater Res A 77:285–293

    Article  CAS  PubMed  Google Scholar 

  33. Rosen ED (2002) The molecular control of adipogenesis, with special reference to lymphatic pathology. Ann N Y Acad Sci 979:143–158. discussion 188–196

    Article  CAS  PubMed  Google Scholar 

  34. Schaffler A, Muller-Ladner U, Scholmerich J et al (2006) Role of adipose tissue as an inflammatory organ in human diseases. Endocr Rev 27:449–467

    Article  CAS  PubMed  Google Scholar 

  35. Lane MD, Tang QQ (2005) From multipotent stem cell to adipocyte. Birth Defects Res A Clin Mol Teratol 73:476–477

    Article  CAS  PubMed  Google Scholar 

  36. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  37. Brand-Saberi B (2005) Genetic and epigenetic control of skeletal muscle development. Ann Anat 187:199–207

    Article  CAS  PubMed  Google Scholar 

  38. Tajbakhsh S (2005) Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res 306:364–372

    Article  CAS  PubMed  Google Scholar 

  39. Otto WR, Rao J (2004) Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 37:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dani C (1999) Embryonic stem cell-derived adipogenesis. Cells Tissues Organs 165:173–180

    Article  CAS  PubMed  Google Scholar 

  41. Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078

    Article  CAS  PubMed  Google Scholar 

  42. Hong JH, Yaffe MB (2006) TAZ: a beta-cateninlike molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5:176–179

    Article  CAS  PubMed  Google Scholar 

  43. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347

    PubMed  CAS  Google Scholar 

  44. Cho HH, Shin KK, Kim YJ et al (2010) NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol 223:168–177

    PubMed  CAS  Google Scholar 

  45. Cervelli V, Gentile P, Grimaldi M (2009) Regenerative surgery: use of fat grafting combined with platelet-rich plasma for chronic lower-extremity ulcers. Aesthet Plast Surg 33:340–345

    Article  CAS  Google Scholar 

  46. Cervelli V, Gentile P, Casciani CU (2009) Use of platelet gel in chronic lower extremity ulcers. Plast Reconstr Surg 123:122e–123e

    Article  CAS  PubMed  Google Scholar 

  47. Cervelli V, De Angelis B, Lucarini L et al (2010) Tissue regeneration in loss of substance on the lower limbs through use of platelet-rich plasma, stem cells from adipose tissue, and hyaluronic acid. Adv Skin Wound Care 23:262–272

    Article  PubMed  Google Scholar 

  48. Crovetti G, Martinelli G, Issi M et al (2004) Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci 30:145–151

    Article  PubMed  Google Scholar 

  49. McAleer JP, Kaplan E, Persich G (2006) Efficacy of concentrated autologous platelet-derived growth factors in chronic lower extremity wounds. J Am Podiatr Med Assoc 96:482–488

    Article  PubMed  Google Scholar 

  50. Rozman P, Use BZ (2007) of platelet growth factors in treating wounds and soft tissue injuries (review). Acta Dermatovenerol Alp Panonica Adriat 16:156–165

    CAS  Google Scholar 

  51. Kazakos K, Lyras DN, Verettas D et al (2009) The use of autologous PRP gel as an aid in the management of acute trauma wounds. Injury 40:801–805

    Article  CAS  PubMed  Google Scholar 

  52. Powell DM, Chang E, Farrior EH (2001) Recovery from deep-plane rhytidectomy following unilateral wound treatment with autologous platelet gel: a pilot study. Arch Facial Plast Surg 3:245–250

    Article  CAS  PubMed  Google Scholar 

  53. Guerrerosantos J (2008) Evolution of technique: face and neck lifting and fat injections. Clin Plast Surg 35:663–676

    Article  PubMed  Google Scholar 

  54. Guerrerosantos J, Guerrerosantos F, Orozco J (2007) Classification and treatment of facial tissue atrophy in Parry-Romberg disease. Aesthet Plast Surg 31:424–434

    Article  Google Scholar 

  55. Cervelli V, Gentile P (2009) Use of cell fat mixed with platelet gel in progressive hemifacial atrophy. Aesthet Plast Surg 33:22–27

    Article  CAS  Google Scholar 

  56. Grimaldi M, Gentile P, Labardi L et al (2008) Lipostructure technique in Romberg syndrome. J Craniofac Surg 19:1089–1091

    Article  PubMed  Google Scholar 

  57. Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthet Plast Surg 19:421–425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Gentile, P., Cervelli, V. (2018). Adipose-Derived Stromal Vascular Fraction Cells and Platelet-Rich Plasma: Basic and Clinical Implications for Tissue Engineering Therapies in Regenerative Surgery. In: Bunnell, B.A., Gimble, J.M. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 1773. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7799-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7799-4_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7797-0

  • Online ISBN: 978-1-4939-7799-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics