Skip to main content

Preparation of Amyloidogenic Aggregates from EF-Hand β-Parvalbumin and S100 Proteins

  • Protocol
  • First Online:
Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1779))

Abstract

Proteins containing EF-hand helix-loop-helix-binding motifs play essential roles in calcium homeostasis and signaling pathways. These proteins have considerable structural and functional diversity by virtue of their cation-binding properties, and occur as either Ca2+-bound or Ca2+-free states with distinct aggregation propensities. That is the case among β-parvalbumins and S100 proteins, which under certain conditions undergo Ca2+-dependent self-assembly reactions with the formation of oligomers, amyloid-type aggregates and fibrils. These phenomena may be particularly relevant in human S100A6 protein and in fish Gad m 1 allergenic protein, which are implicated in human disease processes. Here, we describe detailed methods to generate and monitor the formation of amyloidogenic assemblies and aggregates of these two EF-hand proteins in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Gad m 1:

Allergome nomenclature of Atlantic cod β-parvalbumin with UniProtKB sequence A51783

ThT:

Thioflavin T

References

  1. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68

    Article  PubMed  CAS  Google Scholar 

  2. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405(2):199–221

    Article  PubMed  CAS  Google Scholar 

  3. Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    Article  PubMed  CAS  Google Scholar 

  4. Botelho HM, Leal SS, Cardoso I et al (2012) S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 287:42233–42242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Carvalho SB, Botelho HM, Leal SS et al (2013) Intrinsically disordered and aggregation prone regions underlie beta-aggregation in S100 proteins. PLoS One 8(10):e76629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Martinez J, Sanchez R, Castellanos M et al (2015) Fish beta-parvalbumin acquires allergenic properties by amyloid assembly. Swiss Med Wkly 145:w14128

    PubMed  Google Scholar 

  7. Sanchez R, Martinez J, Castro A et al (2016) The amyloid fold of Gad m 1 epitopes governs IgE binding. Sci Rep 6:32801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yanamandra K, Alexeyev O, Zamotin V et al (2009) Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PLoS One 4(5):e5562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    Article  PubMed  CAS  Google Scholar 

  10. Donato R, Sorci G, Giambanco I (2017) S100A6 protein: functional roles. Cell Mol Life Sci 74:2749–2760

    Article  PubMed  CAS  Google Scholar 

  11. Fritz G, Botelho HM, Morozova-Roche LA et al (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277:4578–4590

    Article  CAS  PubMed  Google Scholar 

  12. Carvalho SB, Cardoso I, Botelho HM et al (2014) Structural heterogeneity and bioimaging of S100 amyloid assemblies. In: Uversky VN, Lyubchenko YL (eds) Bio-nanoimaging. Academic, Boston, pp 197–212

    Chapter  Google Scholar 

  13. Sharp MF, Lopata AL (2014) Fish allergy: in review. Clin Rev Allergy Immunol 46:258–271

    Article  CAS  PubMed  Google Scholar 

  14. Stephen JN, Sharp MF, Ruethers T et al (2017) Allergenicity of bony and cartilaginous fish – molecular and immunological properties. Clin Exp Allergy 47:300–312

    Article  PubMed  CAS  Google Scholar 

  15. Moraes AH, Ackerbauer D, Kostadinova M et al (2014) Solution and high-pressure NMR studies of the structure, dynamics, and stability of the cross-reactive allergenic cod parvalbumin Gad m 1. Proteins 82:3032–3042

    Article  PubMed  CAS  Google Scholar 

  16. Erickson JR, Moerland TS (2006) Functional characterization of parvalbumin from the Arctic cod (Boreogadus saida): similarity in calcium affinity among parvalbumins from polar teleosts. Comp Biochem Physiol A Mol Integr Physiol 143:228–233

    Article  PubMed  CAS  Google Scholar 

  17. Whittington AC, Moerland TS (2012) Resurrecting prehistoric parvalbumins to explore the evolution of thermal compensation in extant Antarctic fish parvalbumins. J Exp Biol 215:3281–3292

    Article  PubMed  CAS  Google Scholar 

  18. Pauls TL, Cox JA, Berchtold MW (1996) The Ca2+(−)binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta 1306:39–54

    Article  PubMed  Google Scholar 

  19. Permyakov EA, Medvedkin VN, Mitin YV et al (1991) Noncovalent complex between domain AB and domains CD*EF of parvalbumin. Biochim Biophys Acta 1076:67–70

    Article  PubMed  CAS  Google Scholar 

  20. Ostapchenko V, Gasset M, Baskakov IV (2012) Atomic force fluorescence microscopy in the characterization of amyloid fibril assembly and oligomeric intermediates. Methods Mol Biol 849:157–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Fundação para a Ciência e a Tecnologia (FCT/MCTES, Portugal) through grants UID/Multi/04046/2013 (to BioISI/C.M.G.), PTDC/NEU-NMC/2138/2014 (to C.M.G.), IF/01046/2014 (to C.M.G.). Bial Foundation is acknowledged through grant PT/FB/BL-2014-343 (to C.M.G.). AEI/EU-FEDER (Spain) is acknowledged for grants SAF2014-52661-C3 and BFU2015-72271-EXP (to M.G.). J.S.C. was a recipient of a Ph.D. fellowship (SFRH/BD/101171/2014) from Fundação para a Ciência e a Tecnologia (FCT/MCTES, Portugal). G. Fritz (Freiburg University) is gratefully acknowledged for the S100A6 expression plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio M. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martínez, J., Cristóvão, J.S., Sánchez, R., Gasset, M., Gomes, C.M. (2018). Preparation of Amyloidogenic Aggregates from EF-Hand β-Parvalbumin and S100 Proteins. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 1779. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7816-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7816-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7815-1

  • Online ISBN: 978-1-4939-7816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics