Skip to main content

High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Abstract

Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (CCCP, FCCP, DNP) to collapse the protonmotive force across the mitochondrial inner membrane and measure the electron transfer (ET) capacity (open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between non-phosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ET capacity. If OXPHOS capacity (maximally ADP-stimulated O2 flux) is less than ET capacity, the phosphorylation pathway contributes to flux control. Physiological substrate combinations supporting the NADH and succinate pathway are required to reconstitute tricarboxylic acid cycle function. This supports maximum ET and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCP :

Coupling control protocol

ET :

Electron transfer

E :

ET capacity

FCR :

Flux control ratio

FCF :

Flux control factor

HRFR:

HRFR High-Resolution FluoRespirometry

L :

LEAK respiration

mt :

Mitochondrial

O2k:

O2k Oxygraph-2k

P :

OXPHOS capacity

POS :

Polarographic oxygen sensor

R :

ROUTINE respiration

Rox:

Residual oxygen consumption

SUIT:

Substrate-uncoupler-inhibitor titration

W w :

Wet weight

References

  1. Gnaiger E (2014) Mitochondrial pathways and respiratory control. Oroboros MiPNet Publications, Innsbruck. http://www.oroboros.at

    Google Scholar 

  2. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27:583–596

    Article  CAS  PubMed  Google Scholar 

  3. Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277–297

    Article  CAS  PubMed  Google Scholar 

  4. Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. Wiley, New York, pp 327–352

    Google Scholar 

  5. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845

    Article  CAS  PubMed  Google Scholar 

  6. Gnaiger E (2003) Oxygen conformance of cellular respiration: a perspective of mitochondrial physiology. Adv Exp Med Biol 543:39–56

    Article  CAS  PubMed  Google Scholar 

  7. Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, New York, pp 431–442

    Chapter  Google Scholar 

  8. MitoEAGLE preprint 2017-11-11(16). The protonmotive force and respiratory control: building blocks of mitochondrial physiology Part 1. http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2017-09-21

  9. Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  PubMed  Google Scholar 

  10. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibres. Biochim Biophys Acta 892:191–196

    Article  CAS  PubMed  Google Scholar 

  11. Burtscher J, Zangrandi L, Schwarzer C, Gnaiger E (2015) Differences in mitochondrial function in homogenated samples from healthy and epileptic specific brain tissues revealed by high-resolution respirometry. Mitochondrion 25:104–112

    Article  CAS  PubMed  Google Scholar 

  12. Gnaiger E, Méndez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci U S A 97:11080–11085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemieux H, Semsroth S, Antretter H, Hoefer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738

    Article  CAS  PubMed  Google Scholar 

  14. Sumbalová Z, Garcia-Souza LF, Veliká B, Volani C, Gnaiger E (2017) Analysis of mitochondrial function in human blood cells. In: Gvozdjáková A (ed) Recent advances in mitochondrial medicine and Coenzyme Q10. NOVA Sciences, New York

    Google Scholar 

  15. Hütter E, Unterluggauer H, Garedew A, Jansen-Dürr P, Gnaiger E (2006) High-resolution respirometry - a modern tool in aging research. Exp Gerontol 41:103–109

    Article  CAS  PubMed  Google Scholar 

  16. Steinlechner-Maran R, Eberl T, Kunc M, Margreiter R, Gnaiger E (1996) Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol 271:C2053–C2061

    Article  CAS  PubMed  Google Scholar 

  17. Hütter E, Renner K, Pfister G, Stöckl P, Jansen-Dürr P, Gnaiger E (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 380:919–928

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    PubMed  CAS  Google Scholar 

  19. Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E (2002) H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation 74:1800–1803

    Article  CAS  PubMed  Google Scholar 

  20. Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E (2003) Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta 1642:115–123

    Article  CAS  PubMed  Google Scholar 

  21. Steinlechner-Maran R, Eberl T, Kunc M, Schröcksnadel H, Margreiter R, Gnaiger E (1997) Respiratory defect as an early event in preservation/reoxygenation injury in endothelial cells. Transplantation 63:136–142

    Article  CAS  PubMed  Google Scholar 

  22. Aguirre E, Rodríguez-Juárez F, Bellelli A, Gnaiger E, Cadenas S (2010) Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2010.01.033

  23. Stadlmann S, Renner K, Pollheimer J, Moser PL, Zeimet AG, Offner FA, Gnaiger E (2006) Preserved coupling of oxidative phosphorylation but decreased mitochondrial respiratory capacity in IL-1β treated human peritoneal mesothelial cells. Cell Biochem Biophys 44:179–186

    Article  CAS  PubMed  Google Scholar 

  24. Smolková K, Bellance N, Scandurra F, Génot E, Gnaiger E, Plecitá-Hlavatá L, Ježek P, Rossignol R (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr. https://doi.org/10.1007/s10863-009-9267-x

  25. Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250:C663–C675

    Article  CAS  PubMed  Google Scholar 

  26. Krumschnabel G, Eigentler A, Fasching M, Gnaiger E (2014) Use of safranin for the assessment of mitochondrial membrane potential by high-resolution respirometry and fluorometry. Methods Enzymol 542:163–181

    Article  CAS  PubMed  Google Scholar 

  27. Gnaiger E, Kuznetsov AV, Rieger G, Amberger A, Fuchs A, Stadlmann S, Eberl T, Margreiter R (2000) Mitochondrial defects by intracellular calcium overload versus endothelial cold ischemia/reperfusion injury. Transpl Int 13:555–557

    Article  Google Scholar 

  28. Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–R1087

    Article  CAS  PubMed  Google Scholar 

  29. Gnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, Díez-Sánchez C, Ara I, Wright-Paradis C, Schrauwen P, Hesselink M, Calbet JAL, Christiansen M, Helge JW, Saltin B (2015) Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter. Scand J Med Sci Sports 25(Suppl 4):126–134

    Article  PubMed  Google Scholar 

  30. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilized cell and skinned fibre techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184:81–100

    Article  CAS  PubMed  Google Scholar 

  31. Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Mark W, Steurer W, Saks V, Usson Y, Margreiter R, Gnaiger E (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286:H1633–H1641

    Article  CAS  PubMed  Google Scholar 

  32. Kuznetsov AV, Strobl D, Ruttmann E, Königsrainer A, Margreiter R, Gnaiger E (2002) Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem 305:186–194

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen UF, Rasmussen HN (2000) Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem 208:37–44

    Article  CAS  PubMed  Google Scholar 

  34. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    PubMed  CAS  Google Scholar 

  35. Gnaiger E, Lassnig B, Kuznetsov AV, Margreiter R (1998) Mitochondrial respiration in the low oxygen environment of the cell: effect of ADP on oxygen kinetics. Biochim Biophys Acta 1365:249–254

    Article  CAS  PubMed  Google Scholar 

  36. Gnaiger E, Kuznetsov AV (2002) Mitochondrial respiration at low levels of oxygen and cytochrome c. Biochem Soc Trans 30:252–258

    Article  CAS  PubMed  Google Scholar 

  37. Scandurra FM, Gnaiger E (2010) Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics. Adv Exp Med Biol 662:7–25

    Article  CAS  PubMed  Google Scholar 

  38. Dubowitz V, Sewry CA (2006) Muscle biopsy: a practical approach. Saunders Elsevier, Philadelphia

    Google Scholar 

  39. Lemieux H, Blier PU, Gnaiger E (2017) Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 7:2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dufour S, Rousse N, Canioni P, Diolez P (1996) Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J 314:743–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein Complex II. Cell 121:1043–1057

    Article  CAS  PubMed  Google Scholar 

  42. Puchowicz MA, Varnes ME, Cohen BH, Friedman NR, Kerr DS, Hoppel CL (2004) Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria – case studies. Mitochondrion 4:377–385

    Article  CAS  PubMed  Google Scholar 

  43. Delhumeau G, Cruz-Mendoza AM, Lojero CG (1994) Protection of cytochrome c oxidase against cyanide inhibition by pyruvate and α-ketoglutarate: effect of aeration in vitro. Toxicol Appl Pharmacol 126:345–351

    Article  CAS  PubMed  Google Scholar 

  44. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F (2007) Patients with Type 2 Diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schöpf B, Schäfer G, Weber A, Talasz H, Eder IE, Klocker H, Gnaiger E (2016) Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells. FEBS J 283:2181–2196

    Article  CAS  PubMed  Google Scholar 

  46. Scheibye-Knudsen M, Quistorff B (2009) Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibres and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle. Eur J Appl Physiol 105:279–287

    Article  CAS  PubMed  Google Scholar 

  47. Aragonés J, Schneider M, Van Geyte K et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40:170–180

    Article  CAS  PubMed  Google Scholar 

  48. Doerrier C, Sumbalova Z, Krumschnabel G, Hiller E, Gnaiger E (2016) SUIT reference protocol for OXPHOS analysis by high-resolution respirometry. Mitochondr Physiol Netw 21(06):1–12

    Google Scholar 

  49. Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128:263–276

    Article  CAS  PubMed  Google Scholar 

  50. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96:1916–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larsen FJ, Schiffer TA, Sahlin K, Ekblom B, Weitzberg E, Lundberg JO (2011) Mitochondrial oxygen affinity predicts basal metabolic rate in humans. FASEB J 25:2843–2852

    Article  CAS  PubMed  Google Scholar 

  52. Krab K, Kempe H, Wikstrom M (2011) Explaining the enigmatic K(M) for oxygen in cytochrome c oxidase: a kinetic model. Biochim Biophys Acta 1807:348–358

    Article  CAS  PubMed  Google Scholar 

  53. Gnaiger E, Forstner H (eds) (1983) Polarographic oxygen sensors. Aquatic and physiological applications. Springer, New York

    Google Scholar 

  54. Gnaiger E (2016) O2k Quality Control 1: polarographic oxygen sensors and accuracy of calibration. Mitochondr Physiol Netw 6.3(15). http://www.oroboros.at

  55. Fasching M, Gnaiger E (2016) O2k Quality Control 2: instrumental oxygen background correction and accuracy of oxygen flux. Mitochondr Physiol Netw 14.6(05):1–8. http://www.oroboros.at

    Google Scholar 

  56. Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria. Biomolecules 5:1319–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Komlodi T, Sobotka A, Krumschnabel G, Doerrier C, Bezuidenhout N, Hiller E, Gnaiger E (2018) Comparison of mitochondrial incubation media for measurement of respiration and hydrogen peroxide production. In: Palmeira CM, Moreno AJ (eds) Mitochondrial bioenergetics: methods and protocols, Springer, New York

    Google Scholar 

  58. Harrison DK, Fasching M, Fontana-Ayoub M, Gnaiger E (2015) Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia. J Appl Physiol 119:1210–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Philipp Gradl and his team (WGT-Elektronik GmbH & Co KG) for O2k hardware and electronics development, Lukas Gradl for software development (DatLab 3 to 7), and Markus Haider for software development for p 50 analysis. Marielle Hansl and Stephanie Droescher performed some experiments with intact cells. This work is an extension of the original presentation by Pesta and Gnaiger [9], was supported by K-Regio project MitoFit, and is a contribution to COST Action CA15203 MitoEAGLE.

Competing Financial Interests

E.G. is the founder and CEO of Oroboros Instruments, Innsbruck, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Gnaiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Doerrier, C., Garcia-Souza, L.F., Krumschnabel, G., Wohlfarter, Y., Mészáros, A.T., Gnaiger, E. (2018). High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 1782. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7831-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7831-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7830-4

  • Online ISBN: 978-1-4939-7831-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics