Skip to main content

High-Throughput In Vitro Screening for Inhibitors of Cereal α-Glucosidase

  • Protocol
  • First Online:
Plant Chemical Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1795))

Abstract

The hydrolysis of starch is a key step in plant germination, which also has relevance in the malting and brewing processes for beer and spirit production. Gaps in knowledge about this metabolic process exist that cannot easily be addressed using traditional genetic techniques, due to functional redundancy in many of the enzyme activities required for alpha-glucan metabolism in cereal crop species. Chemical inhibitors provide opportunities to probe the role of carbohydrate-active enzymes and the phenotypes associated with inhibition of specific enzymes. Iminosugars are the largest group of carbohydrate-active enzyme inhibitors and represent an underused resource for the dissection of plant carbohydrate metabolism. Herein we report a method for carrying out a reverse chemical genetic screen on α-glucosidase, the enzyme that catalyzes the final step in starch degradation during plant germination, namely the hydrolysis of maltose to release glucose. This chapter outlines the use of a high-throughput screen of small molecules for inhibition of α-glucosidase using a colorimetric assay which involves the substrate p-nitrophenyl α-d-glucopyranoside. Identified inhibitors can be further utilized in phenotypic screens to probe the roles played by amylolytic enzymes. Furthermore this 96-well plate-based method can be adapted to assay exo-glycosidase activities involved in other aspects of carbohydrate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Geographic Magazine What the World Eats. http://www.nationalgeographic.com/what-the-world-eats/. Accessed 6 June 2017

  2. BeMiller JN, Whistler RL (2009) Starch: chemistry and technology. Academic Press, San Diego

    Google Scholar 

  3. Borrill P, Adamski N, Uauy C (2015) Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208(4):1008–1022

    Article  PubMed  Google Scholar 

  4. Rugen MD, Andriotis VME, Field RA (2017) Small-molecule probes of plant glycopolymer metabolism. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Oxford

    Google Scholar 

  5. Tóth R, van der Hoorn RAL (2010) Emerging principles in plant chemical genetics. Trends Plant Sci 15(2):81–88

    Article  CAS  PubMed  Google Scholar 

  6. O’Connor CJ, Laraia L, Spring DR (2011) Chemical genetics. Chem Soc Rev 40(8):4332–4345

    Article  CAS  PubMed  Google Scholar 

  7. Robert S, Raikhel NV, Hicks GR (2009) Powerful partners: Arabidopsis and chemical genomics. Arab Book 7:e0109

    Article  Google Scholar 

  8. Dejonghe W, Russinova E (2017) Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol, vol 174, pp 5–20

    Google Scholar 

  9. Fu H (2012) Chemical genomics. Cambridge University Press, Cambridge

    Google Scholar 

  10. Abdurakhmonov IY (2016) Genomics era for plants and crop species–advances made and needed tasks ahead. In: Plant genomics. InTech, London

    Chapter  Google Scholar 

  11. Andriotis VM, Rejzek M, Rugen MD, Svensson B, Smith AM, Field RA (2016) Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism. Biochem Soc Trans 44(1):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borges de Melo E, da Silveira Gomes A, Carvalho I (2006) α- and β-glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62(44):10277–10302

    Article  CAS  Google Scholar 

  13. Bras NF, Cerqueira NM, Ramos MJ, Fernandes PA (2014) Glycosidase inhibitors: a patent review (2008-2013). Expert Opin Ther Pat 24(8):857–874

    Article  CAS  PubMed  Google Scholar 

  14. Gloster TM, Vocadlo DJ (2012) Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat Chem Biol 8(8):683–694

    Article  CAS  PubMed  Google Scholar 

  15. Alonzi DS, Scott KA, Dwek RA, Zitzmann N (2017) Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 45(2):571–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zamoner LOB, Aragão-Leoneti V, Mantoani SP, Rugen MD, Nepogodiev SA, Field RA, Carvalho I (2016) CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties. Carbohydr Res 429:29–37

    Article  CAS  PubMed  Google Scholar 

  17. Li C, Li QG, Dunwell JM, Zhang YM (2012) Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol 29(10):3227–3236

    Article  CAS  PubMed  Google Scholar 

  18. Stevens KL, Molyneux RJ (1988) Castanospermine—a plant growth regulator. J Chem Ecol 14(6):1467–1473

    Article  CAS  PubMed  Google Scholar 

  19. Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357

    Article  CAS  Google Scholar 

  20. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796

    Article  Google Scholar 

  21. Payen A, Persoz J-F (1833) Mémoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels. Annales de Chimie et de Physique 53(2):73–92

    Google Scholar 

  22. Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73(14):2781–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Konishi Y, Aitani M, Nakatani N (1998) Effects of Bay m 1099, an alpha-glucosidase inhibitor, on starch degradation in germinating mung beans. Biosci Biotechnol Biochem 62(1):142–144

    Article  CAS  PubMed  Google Scholar 

  24. Naested H, Kramhøft B, Lok F, Bojsen K, Yu S, Svensson B (2006) Production of enzymatically active recombinant full-length barley high pI α-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification. Protein Expr Purif 46(1):56–63

    Article  CAS  PubMed  Google Scholar 

  25. Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B, Denyer K, Field RA, Smith AM (2011) The role of α-glucosidase in germinating barley grains. Plant Physiol 155(2):932–943

    Article  CAS  PubMed  Google Scholar 

  26. Andriotis VME, Saalbach G, Waugh R, Field RA, Smith AM (2016) The maltase involved in starch metabolism in barley endosperm is encoded by a single gene. PLoS One 11(3):e0151642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andriotis VM, Rejzek M, Barclay E, Rugen MD, Field RA, Smith AM (2016) Cell wall degradation is required for normal starch mobilisation in barley endosperm. Sci Rep 6:33215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mega T (2004) Conversion of the carbohydrate structures of glycoproteins in roots of Raphanus sativus using several glycosidase inhibitors. The. J Biochem 136(4):525–531

    Article  CAS  PubMed  Google Scholar 

  29. Mega T (2005) Glucose trimming of N-glycan in endoplasmic reticulum is indispensable for the growth of Raphanus sativus seedling (kaiware radish). Biosci Biotechnol Biochem 69(7):1353–1364

    Article  CAS  PubMed  Google Scholar 

  30. Nash RJ, Kato A, Yu CY, Fleet GW (2011) Iminosugars as therapeutic agents: recent advances and promising trends. Future Med Chem 3(12):1513–1521

    Article  CAS  PubMed  Google Scholar 

  31. Asano N, Nash RJ, Molyneux RJ, Fleet GWJ (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry 11(8):1645–1680

    Article  CAS  Google Scholar 

  32. Frandsen TP, Lok F, Mirgorodskaya E, Roepstorff P, Svensson B (2000) Purification, enzymatic characterization, and nucleotide sequence of a high-isoelectric-point α-glucosidase from barley malt. Plant Physiol 123(1):275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Im H, Henson CA (1995) Characterization of high pI α-glucosidase from germinated barley seeds: substrate specificity, subsite affinities and active-site residues. Carbohydr Res 277(1):145–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alison M Smith and Vasilios Andriotis for helpful discussions and advice. This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC, UK) Institute Strategic Programme Grant (MET) [BB/J004561/1] to the John Innes Centre, a BBSRC-Crop Improvement Research Club (CIRC) grant BB/I017291/1 to A.M.S. and R.A.F, and BBSRC PhD studentship BB/J500069/1 to M.D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rugen, M.D., Rejzek, M., Naested, H., Svensson, B., Field, R.A. (2018). High-Throughput In Vitro Screening for Inhibitors of Cereal α-Glucosidase. In: Fauser, F., Jonikas, M. (eds) Plant Chemical Genomics. Methods in Molecular Biology, vol 1795. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7874-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7874-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7873-1

  • Online ISBN: 978-1-4939-7874-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics