Skip to main content

Synthesis of Triangular Silver and Gold Nanoprisms Using Consensus Sequence Tetratricopeptide Repeat Proteins

  • Protocol
  • First Online:
Protein Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Anisotropic metallic nanoparticles, such as Au and Ag nanoprisms (NPSMs), have received tremendous attention for their application in catalysis, molecular sensing, signal amplification, bioimaging, and therapeutic applications due to their shape-dependent optical and physical properties. Herein, we present a protein-enabled synthetic strategy for the seeded growth of silver and gold NPSMs with low shape polydispersity, narrow size distribution, and tailored plasmonic absorbance. During the initial seed nucleation step, consensus sequence tetratricopeptide repeat (CTPR) proteins are utilized as potent stabilizers to facilitate the formation of planar-twinned Ag seeds. High yield production of well-defined Ag/Au NPSMs is achieved, respectively, by adding CTPR-stabilized Ag seeds into the growth solutions containing metal precursor, mild reducing agent, sodium halide, and additional CTPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beeram SR, Zamborini FP (2010) Purification of gold nanoplates grown directly on surfaces for enhanced localized surface Plasmon resonance biosensing. ACS Nano 4:3633–3646

    Article  CAS  PubMed  Google Scholar 

  2. Pelaz B, Grazu V, Ibarra A et al (2012) Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir 28:8965–8970

    Article  CAS  PubMed  Google Scholar 

  3. Millstone JE, Hurst SJ, Métraux GS et al (2009) Colloidal gold and silver triangular nanoprisms. Small 5:646–664

    Article  CAS  PubMed  Google Scholar 

  4. Yu H, Zhang Q, Liu H et al (2014) Thermal synthesis of silver nanoplates revisited: a modified photochemical process. ACS Nano 8:10252–10261

    Article  CAS  PubMed  Google Scholar 

  5. Xue B, Wang D, Zuo J et al (2015) Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale 7:8048–8057

    Article  CAS  PubMed  Google Scholar 

  6. Jin R, Charles Cao Y, Hao E et al (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  PubMed  Google Scholar 

  7. Jin R, Cao Y, Mirkin CA et al (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  PubMed  Google Scholar 

  8. Xue C, Mirkin CA (2007) pH-switchable silver nanoprism growth pathways. Angew Chem Int Ed 46:2036–2038

    Article  CAS  Google Scholar 

  9. Pastoriza-Santos I, Liz-Marzán LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905

    Article  CAS  Google Scholar 

  10. Kim MH, Yoon DK, Im SH (2015) Growth pathways of silver nanoplates in kinetically controlled synthesis: bimodal versus unimodal growth. RSC Adv 5:14266–14272

    Article  CAS  Google Scholar 

  11. Millstone JE, Park S, Shuford KL et al (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313

    Article  CAS  PubMed  Google Scholar 

  12. Millstone JE, Métraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214

    Article  CAS  Google Scholar 

  13. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  14. Huang Y, Ferhan AR, Gao Y et al (2014) High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6:6496–6500

    Article  CAS  PubMed  Google Scholar 

  15. Scarabelli L, Coronado-Puchau M, Giner-Casares JJ et al (2014) Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8:5833–5842

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Ji F, Xu Y et al (2014) High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett 14:7201–7206

    Article  CAS  PubMed  Google Scholar 

  17. Millstone JE, Wei W, Jones MR et al (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8:2526–2529

    Article  CAS  PubMed  Google Scholar 

  18. Ha TH, Koo H-J, Chung BH (2007) Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C 111:1123–1130

    Article  CAS  Google Scholar 

  19. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5−40 nm diameter gold nanoparticles. Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  20. Niu W, Zhang L, Xu G (2013) Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale 5:3172–3181

    Article  CAS  PubMed  Google Scholar 

  21. Personick ML, Mirkin CA (2013) Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc 135:18238–18247

    Article  CAS  PubMed  Google Scholar 

  22. Lohse SE, Burrows ND, Scarabelli L et al (2014) Anisotropic noble metal nanocrystal growth: the role of halides. Chem Mater 26:34–43

    Article  CAS  Google Scholar 

  23. Alkilany AM, Nagaria PK, Hexel CR et al (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708

    Article  CAS  PubMed  Google Scholar 

  24. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geng X, Grove TZ (2015) Repeat protein mediated synthesis of gold nanoparticles: effect of protein shape on the morphological and optical properties. RSC Adv 5:2062–2069

    Article  CAS  Google Scholar 

  26. Shankar SS, Rai A, Ankamwar B et al (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    Article  CAS  PubMed  Google Scholar 

  27. Liu B, Xie J, Lee JY et al (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109:15256–15263

    Article  CAS  PubMed  Google Scholar 

  28. Xie J, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111:10226–10232

    Article  CAS  Google Scholar 

  29. Au L, Lim B, Colletti P et al (2010) Synthesis of gold microplates using bovine serum albumin as a reductant and a stabilizer. Chem Asian J 5:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li C, Bolisetty S, Mezzenga R (2013) Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Adv Mater 25:3694–3700

    Article  CAS  PubMed  Google Scholar 

  31. Xie J, Lee JY, Wang DIC et al (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672–682

    Article  CAS  PubMed  Google Scholar 

  32. Naik RR, Stringer SJ, Agarwal G et al (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  PubMed  Google Scholar 

  33. Geng X, Roth KL, Freyman MC et al (2016) Seed-mediated biomineralizaton toward the high yield production of gold nanoprisms. Chem Commun 52:9829–9832

    Article  CAS  Google Scholar 

  34. Geng X, Leng W, Carter NA et al (2016) Protein-aided formation of triangular silver nanoprisms with enhanced SERS performance. J Chem Mater B 4:4182–4190

    Article  CAS  Google Scholar 

  35. Cortajarena AL, Yi F, Regan L (2008) Designed TPR modules as novel anticancer agents. ACS Chem Biol 3:161–166

    Article  CAS  PubMed  Google Scholar 

  36. Roth KL, Geng X, Grove TZ (2016) Bioinorganic interface: mechanistic studies of protein-directed nanomaterial synthesis. J Phys Chem C 120:10951–10960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Guoliang Liu for insightful comments, suggestions, and discussion on this research work. The authors acknowledge ICTAS Nanoscale Characterization and Fabrication Lab (NCFL) for the use of AFM, TEM, and SEM. This work was in part supported by the JFC ICTAS grant number 119106 to TZG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijana Z. Grove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geng, X., Grove, T.Z. (2018). Synthesis of Triangular Silver and Gold Nanoprisms Using Consensus Sequence Tetratricopeptide Repeat Proteins. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics