Skip to main content

Synthesis of Metal–Organic Frameworks on Tobacco Mosaic Virus Templates

  • Protocol
  • First Online:
Protein Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Tobacco mosaic virus (TMV) has long been exploited as a robust biological scaffold for organic/inorganic modification owing to its anisotropic structure and chemically addressable amino acid residues on both the exterior and interior. We present the fabrication of a crystalline microporous metal–organic framework (MOF) shell on the exterior of TMV, which retains its rod-like morphology, and produces uniformly formed core–shell structures with high accessible surface area and pore volume. We also describe an exfoliation method that can recover the intact viral particle from the core–shell composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belowich ME, Valente C, Stoddart JF (2010) Template-directed syntheses of rigid oligorotaxanes under thermodynamic control. Angew Chem Int Ed 49:7208–7212

    Article  Google Scholar 

  2. Fan XZ, Pomerantseva E, Gnerlich M et al (2013) Tobacco mosaic virus: a biological building block for micro/nano/bio systems. J Vac Sci Technol A 31:050815

    Article  CAS  Google Scholar 

  3. Schlick TL, Ding Z, Kovacs EW et al (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723

    Article  CAS  PubMed  Google Scholar 

  4. Shenton W, Douglas T, Young M et al (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  5. Shukla S, Eber FJ, Nagarajan AS et al (2015) The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv Healthc Mater 4:874–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruckman MA, Randolph LN, Gulati NM et al (2015) Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages. J Mater Chem B 3:7503–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dujardin E, Peet C, Stubbs G et al (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417

    Article  CAS  Google Scholar 

  8. Knez M, Sumser M, Bittner AM et al (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14:116–124

    Article  CAS  Google Scholar 

  9. Pomerantseva E, Gerasopoulos K, Chen X et al (2012) Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries. J Power Sources 206:282–287

    Article  CAS  Google Scholar 

  10. Royston E, Ghosh A, Kofinas P et al (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24:906–912

    Article  CAS  PubMed  Google Scholar 

  11. Yaghi OM, O'Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  12. Liang K, Ricco R, Doherty CM et al (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chulkaivalsucharit P, Wu X, Ge J (2015) Synthesis of enzyme-embedded metal-organic framework nanocrystals in reverse micelles. RSC Adv 5:101293–101296

    Article  CAS  Google Scholar 

  14. Wu X, Ge J, Yang C et al (2015) Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem Commun 51:13408–13411

    Article  CAS  Google Scholar 

  15. Wu X, Yang C, Ge J et al (2015) Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale 7:18883–18886

    Article  CAS  PubMed  Google Scholar 

  16. Liang K, Coghlan CJ, Bell SG et al (2016) Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem Commun 52:473–476

    Article  CAS  Google Scholar 

  17. Lyu F, Zhang Y, Zare RN et al (2014) One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett 14:5761–5765

    Article  CAS  PubMed  Google Scholar 

  18. Shieh F-K, Wang S-C, Yen C-I et al (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 137:4276–4279

    Article  CAS  PubMed  Google Scholar 

  19. Liang K, Richardson JJ, Cui J et al (2016) Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv Mater 28:7910–7914

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Dharmarwardana M, Welch RP et al (2016) Template-directed synthesis of porous and protective core–shell bionanoparticles. Angew Chem Int Ed 55:10691–10696

    Article  CAS  Google Scholar 

  21. Peng Y, Krungleviciute V, Eryazici I et al (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894

    Article  CAS  PubMed  Google Scholar 

  22. Gándara F, Furukawa H, Lee S et al (2014) High methane storage capacity in aluminum metal–organic frameworks. J Am Chem Soc 136:5271–5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karagiaridi O, Lalonde MB, Bury W et al (2012) Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc 134:18790–18796

    Article  CAS  PubMed  Google Scholar 

  24. He C, Lu K, Liu D et al (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136:5181–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park KS, Ni Z, Côté AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the generous assistance we received from Professor Gerald Stubbs and Professor Nicole F. Steinmetz when starting our group for providing N. benthamiana seeds and TMV stock solutions. We would have been unable to conduct this research without the assistance they provided when others declined.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah J. Gassensmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, S., Gassensmith, J.J. (2018). Synthesis of Metal–Organic Frameworks on Tobacco Mosaic Virus Templates. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics