Skip to main content

Identification of Novel Mycobacterial Targets for Murine CD4+ T-Cells by IFNγ ELISPOT

  • Protocol
  • First Online:
Handbook of ELISPOT

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1808))

Abstract

Enzyme-linked immunospot (ELISPOT) is an assay used to detect secretion of cytokines from immune cells. The resolution and sensitivity of ELISPOT allow for the detection of rare T cell specificities and small quantities of molecules produced by individual cells. In this chapter, we describe an epitope screening method that uses CD4+ T cell ELISPOT assays to identify specific novel mycobacterial antigens as potential vaccine candidates. In order to screen a large number of candidate epitopes simultaneously, pools of predicted MHC class II peptides were used to identify mycobacterial specific CD4+ T cells. Using this method, we identified novel mycobacterial antigens as vaccine candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalyuzhny AE (2005) Chemistry and biology of the ELISPOT assay. Methods Mol Biol 302:15–31

    CAS  PubMed  Google Scholar 

  2. Czerkinsky CC, Nilsson LA, Nygren H et al (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65:109–121

    Article  PubMed  CAS  Google Scholar 

  3. Kouwenhoven M, Ozenci V, Teleshova N et al (2001) Enzyme-linked immunospot assays provide a sensitive tool for detection of cytokine secretion by monocytes. Clin Diagn Lab Immunol 8:1248–1257

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Navarrete MA, Bertinetti-Lapatki C, Michelfelder I et al (2013) Usage of standardized antigen-presenting cells improves ELISpot performance for complex protein antigens. J Immunol Methods 391:146–153

    Article  PubMed  CAS  Google Scholar 

  5. Johnson AJ, Kennedy SC, Lindestam Arlehamn CS et al (2017) Identification of mycobacterial RplJ/L10 and RpsA/S1 proteins as novel targets for CD4+ T cells. Infect Immun 85:e01023–e01016. https://doi.org/10.1128/IAI.01023-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fonteneau J-F, Larsson M, Somersan S et al (2001) Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. J Immunol Methods 258:111–126

    Article  CAS  PubMed  Google Scholar 

  7. Bozzacco L, Yu H (2013) Identification and quantitation of MHC class II-bound peptides from mouse spleen dendritic cells by immunoprecipitation and mass spectrometry analysis. Methods Mol Biol 1061:231–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang P, Sidney J, Kim Y et al (2010) Peptide binding prediction for HLA DR, DP and DQ molecules. BMC Bioinformatics 11:568. https://doi.org/10.1186/1471-2105-11-568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Krieger JI, Grammer SF, Grey HM et al (1985) Antigen presentation by splenic B cells: resting B cells are ineffective, whereas activated B cells are effective accessory cells for T cell responses. J Immunol 135:2937–2945

    PubMed  CAS  Google Scholar 

  10. Pasquetto V, Bui H-H, Giannino R et al (2005) HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J Immunol 175:5504–5515

    Article  PubMed  CAS  Google Scholar 

  11. Beamer GL, Flaherty DK, Vesosky B (2008) Peripheral blood gamma interferon release assays predict lung responses and Mycobacterium tuberculosis disease outcome in mice. Clin Vaccine Immunol 15:474–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lindestam Arlehamn CS, McKinney DM, Carpenter C et al (2016) A quantitative analysis of complexity of human pathogen-specific CD4 T cell responses in healthy M. tuberculosis infected South Africans. PLoS Pathog 12:e1005760. https://doi.org/10.1371/journal.ppat.1005760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mothé BR, Lindestam Arlehamn CS, Dow C et al (2015) The TB-specific CD4+ T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap humans. Tuberculosis 95:722–735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Porcelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, A.J., Kennedy, S.C., Ng, T.W., Porcelli, S.A. (2018). Identification of Novel Mycobacterial Targets for Murine CD4+ T-Cells by IFNγ ELISPOT. In: Kalyuzhny, A. (eds) Handbook of ELISPOT . Methods in Molecular Biology, vol 1808. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8567-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8567-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8566-1

  • Online ISBN: 978-1-4939-8567-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics