Skip to main content

On the Study of D4R-MOR Receptor–Receptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Abstract

Receptor–receptor interactions that occur in G protein-coupled receptors (GPCRs) oligomers can be explored using three different functional approaches as starting point: (1) quantitative receptor autoradiography (saturation assay); (2) agonist-stimulated [35S]GTPγS binding in autoradiography; and (3) immunohistochemistry. Together, they allow to explore functional changes in receptors signaling transduction, i.e., receptor recognition, G protein activation, and downstream signaling cascades. Here, we describe these three selected methods that have been successfully employed in the study of the functional interaction of dopamine D4 (D4R) and μ opioid (MOR) receptors in the rat caudate putamen in the context of morphine addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuxe K, Borroto-Escuela D (2016) Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication. Neural Regen Res 11:1220

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fuxe K, Borroto-Escuela DO, Marcellino D et al (2012) GPCR heteromers and their allosteric receptor-receptor interactions. Curr Med Chem 19:356–363

    Article  CAS  PubMed  Google Scholar 

  3. Ferré S, Casadó V, Devi LA et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ciruela F, Vallano A, Arnau JM et al (2010) G protein-coupled receptor oligomerization for what? J Recept Signal Transduct Res 30:322–330

    Article  CAS  PubMed  Google Scholar 

  5. Khelashvili G, Dorff K, Shan J et al (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26:1804–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borroto-Escuela DO, Brito I, Romero-Fernandez W et al (2014) The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 15:8570–8590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guidolin D, Agnati LF, Marcoli M et al (2015) G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 19:265–283

    Article  CAS  PubMed  Google Scholar 

  8. Fuxe K, Marcellino D, Rivera A et al (2008) Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 58:415–452

    Article  CAS  PubMed  Google Scholar 

  9. Rivera A, Cuéllar B, Girón FJ et al (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229

    Article  CAS  PubMed  Google Scholar 

  10. Gago B, Fuxe K, Agnati L et al (2007) Dopamine D4 receptor activation decreases the expression of μ-opioid receptors in the rat striatum. J Comp Neurol 502:358–366

    Article  CAS  PubMed  Google Scholar 

  11. Rivera A, Gago B, Suárez-Boomgaard D et al (2017) Dopamine D4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addict Biol 22:1232–1245

    Article  CAS  PubMed  Google Scholar 

  12. Suárez-Boomgaard D, Gago B, Valderrama-Carvajal A et al (2014) Dopamine D4 receptor counteracts morphine-induced changes in μ opioid receptor signaling in the striosomes of the rat caudate putamen. Int J Mol Sci 15:1481–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gago B, Suárez-Boomgaard D, Fuxe K et al (2011) Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. Brain Res 1407:47–61

    Article  CAS  PubMed  Google Scholar 

  14. Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med 374:1253–1263

    Article  CAS  PubMed  Google Scholar 

  15. Novak SP, Håkansson A, Martinez-Raga J et al (2016) Nonmedical use of prescription drugs in the European Union. BMC Psychiatry 16:274

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo H, An S, Ward R et al (2017) Methods used to study the oligomeric structure of G-protein-coupled receptors. Biosci Rep 37:pii: BSR20160547

    Article  CAS  Google Scholar 

  17. Szidonya L, Cserzo M, Hunyady L (2008) Dimerization and oligomerization of G-protein-coupled receptors: debated structures with established and emerging functions. J Endocrinol 196:435–453

    Article  CAS  PubMed  Google Scholar 

  18. Fuxe K, Marcellino D, Guidolin D et al (2008) Heterodimers and receptor mosaics of different types of G-protein-coupled receptors. Physiology (Bethesda) 23:322–332

    CAS  Google Scholar 

  19. Borroto-Escuela DO, Hagman B, Woolfenden M et al (2016) In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. In: Luján R, Ciruela F (eds) Receptor and ion channel detection in the brain. Neuromethods, vol 110. Humana, New York

    Google Scholar 

  20. Gago B, Fuxe K, Brené S et al (2013) Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen. J Neurosci Res 91:1533–1540

    Article  CAS  PubMed  Google Scholar 

  21. Herrlich S, Spieth S, Messner S et al (2012) Osmotic micropumps for drug delivery. Adv Drug Deliv Rev 64:1617–1627

    Article  CAS  PubMed  Google Scholar 

  22. Stumpf WE (2005) Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 51:25–40

    Article  CAS  PubMed  Google Scholar 

  23. Tena-Campos M, Ramon E, Rivera D et al (2014) G-protein-coupled receptors oligomerization: emerging signaling units and new opportunities for drug design. Curr Protein Pept Sci 15:648–658

    Article  CAS  PubMed  Google Scholar 

  24. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33:372–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flores-Burgess A, Millón C, Gago B et al (2017) Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. Neuropharmacology 118:233–241

    Article  CAS  PubMed  Google Scholar 

  26. Llorente-Ovejero A, Manuel I, Giralt MT et al (2017) Increase in cortical endocannabinoid signaling in a rat model of basal forebrain cholinergic dysfunction. Neuroscience 362:206–218

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  28. Harrison C, Traynor JR (2003) The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci 74:489–508

    Article  CAS  PubMed  Google Scholar 

  29. Ho MKC, Su Y, Yeung WWS et al (2009) Regulation of transcription factors by heterotrimeric G proteins. Curr Mol Pharmacol 2:19–31

    Article  CAS  PubMed  Google Scholar 

  30. Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98:11042–11046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruffle JK (2014) Molecular neurobiology of addiction: what’s all the (Δ)FosB about? Am J Drug Alcohol Abuse 40:428–437

    Article  PubMed  Google Scholar 

  32. Grande C, Zhu H, Martin AB et al (2004) Chronic treatment with atypical neuroleptics induces striosomal FosB/ΔFosB expression in rats. Biol Psychiatry 55:457–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by CTS161 (Junta de Andalucía, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rivera, A. et al. (2018). On the Study of D4R-MOR Receptor–Receptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics