Skip to main content

High-Resolution and High-Speed Atomic Force Microscope Imaging

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

The advent of high-speed atomic force microscopy (HS-AFM) over the recent years has opened up new horizons for the study of structure, function and dynamics of biological molecules. HS-AFM is capable of 1000 times faster imaging than conventional AFM. This circumstance uniquely enables the observation of the dynamics of all the molecules present in the imaging area. Over the last 10 years, the HS-AFM has gone from a prototype-state technology that only a few labs in the world had access to (including ours) to an established commercialized technology that is present in tens of labs around the world. In this protocol chapter we share with the readers our practical know-how on high resolution HS-AFM imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate CF (1986) Atomic force microscopy. Phys Rev Lett 56:930–933

    Article  PubMed  CAS  Google Scholar 

  2. Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H (2013) Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7:1817–1822

    Article  PubMed  CAS  Google Scholar 

  3. Ares P, Fuentes-Perez MEE, Herrero-Galan E, Valpuesta JMM, Gil A, Gomez-Herrero J, Moreno-Herrero F (2016) High resolution atomic force microscopy of double-stranded RNA. Nanoscale 8:11818–11826

    Article  CAS  PubMed  Google Scholar 

  4. Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256:1180–1184

    Article  PubMed  CAS  Google Scholar 

  5. Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257:1944–1946

    Article  CAS  PubMed  Google Scholar 

  6. Schabert F, Henn C, Engel A (1995) Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268:92–94

    Article  CAS  PubMed  Google Scholar 

  7. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ando T, Kodera N, Maruyama D, Takai E, Saito K, Toda A (2002) A high-speed atomic force microscope for studying biological macromolecules in action. Jpn J Appl Phys 41:4851–4856

    Article  CAS  Google Scholar 

  9. Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414

    Article  PubMed  CAS  Google Scholar 

  10. Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau J-P, Stahlberg H, Sturgis JN, Scheuring S (2012) Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol 7:525–529

    Article  PubMed  CAS  Google Scholar 

  11. Ando T (2012) High-speed atomic force microscopy coming of age. Nanotechnology 23:62001

    Article  Google Scholar 

  12. Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vukovic L (2017) Computational model and dynamics of monomeric full-length APOBEC3G. ACS Cent Sci 3:1180–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pan Y, Sun Z, Maiti A, Kanai T, Matsuo H, Li M, Harris RS, Shlyakhtenko LS, Lyubchenko YL (2017) Nanoscale characterization of interaction of APOBEC3G with RNA. Biochemistry 56:1473–1481

    Article  PubMed  CAS  Google Scholar 

  14. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H (2011) Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5:665–671

    Article  PubMed  CAS  Google Scholar 

  15. Inoue S, Uchihashi T, Yamamoto D, Ando T (2011) Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chem Commun 47:4974

    Article  CAS  Google Scholar 

  16. Munguira I, Casuso I, Takahashi H, Rico F, Miyagi A, Chami M, Scheuring S (2016) Glasslike membrane protein diffusion in a crowded membrane. ACS Nano 10:2584–2590

    Article  PubMed  CAS  Google Scholar 

  17. Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, Scheuring S, Roux A (2015) Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:866–879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mierzwa BE, Chiaruttini N, Redondo-Morata L, Moser von Filseck J, König J, Larios J, Poser I, Müller-Reichert T, Scheuring S, Roux A, Gerlich DW (2017) Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat Cell Biol 19:787–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kodera N, Sakashita M, Ando T (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum 77:83704

    Article  CAS  Google Scholar 

  20. Husain M, Boudier T, Paul-Gilloteaux P, Casuso I, Scheuring S (2012) Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series. J Mol Recognit 25:292–298

    Article  PubMed  CAS  Google Scholar 

  21. Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    Article  PubMed  CAS  Google Scholar 

  23. Carrasco C, Ares P, De Pablo PJ, Gómez-Herrero J (2008) Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid. Rev Sci Instrum 79:111–113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by French National Institute of Health and Medical Research (Inserm); the program “Investissements d’Avenir” by the French National Research Agency, ANR-10-LABX-0083 (Labex EFL); Grant ANR-16-CE15-0023 (ANR SalmoTubes); Grant ANR-15-CE11-0020 (ANR MoBaRhE). A.M. acknowledges support from the Long Term EMBO Fellowship (ALTF 1427-2014) and the Marie Curie Action (MSCA-IF-2014-EF-655157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Casuso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zuttion, F., Redondo-Morata, L., Marchesi, A., Casuso, I. (2018). High-Resolution and High-Speed Atomic Force Microscope Imaging. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics