Skip to main content

Imaging of Soft and Biological Samples Using AFM Ringing Mode

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Ringing mode of atomic force microscopy (AFM) enables imaging the surfaces of biological samples, cells, tissue, biopolymers, etc. to obtain unique information, such as the size of molecules pulled by the AFM probe from the sample surface, heights of the sample at different load forces, etc. (up to eight different imaging channels can be recorded simultaneously, which is in addition to five channels already available in other rival modes). The imaging can be done in both air (gases) and liquid (buffers). In addition, the images obtained in ringing mode do not have several common artifacts and can be collected up to 20× faster compared to the rival imaging modes. Here we describe a step-by-step approach to collect images in ringing mode applied to biological and soft materials in general. Technical details, potential difficulties, and points of special attention are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  PubMed  CAS  Google Scholar 

  2. Trohalaki S (2012) Multifrequency force microscopy improves sensitivity and resolution over conventional AFM. MRS Bull 37(6):545–546

    Article  Google Scholar 

  3. Yang J (2004) AFM as a high-resolution imaging tool and a molecular bond force probe. Cell Biochem Biophys 41(3):435–450

    Article  PubMed  CAS  Google Scholar 

  4. Sokolov I, Firtel M, Henderson GS (1996) In situ high-resolution AFM imaging of biological surfaces. J Vac Sci Technol B 14:674–678

    Article  CAS  Google Scholar 

  5. Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12(104):artn 20140970. https://doi.org/10.1098/rsif.2014.0970

    Article  CAS  Google Scholar 

  6. Gaikwad RM, Dokukin ME, Iyer KS, Woodworth CD, Volkov DO, Sokolov I (2011) Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force. Analyst 136(7):1502–1506. https://doi.org/10.1039/c0an00366b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sokolov I, Iyer S, Subba-Rao V, Gaikwad RM, Woodworth CD (2007) Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl Phys Lett 91:023902–023901. 023903

    Article  CAS  Google Scholar 

  8. Stan G, Solares SD (2014) Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies. Beilstein J Nanotech 5:278–288. https://doi.org/10.3762/bjnano.5.30

    Article  CAS  Google Scholar 

  9. Herruzo ET, Perrino AP, Garcia R (2014) Fast nanomechanical spectroscopy of soft matter. Nat Commun 5:artn 3126. https://doi.org/10.1038/Ncomms4126

    Article  Google Scholar 

  10. Sokolov I (2015) Fractals: a possible new path to diagnose and cure cancer? Future Oncol 11(22):3049–3051. https://doi.org/10.2217/fon.15.211

    Article  PubMed  CAS  Google Scholar 

  11. Guz NV, Dokukin ME, Woodworth CD, Cardin A, Sokolov I (2015) Towards early detection of cervical cancer: fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer. Nanomedicine 11(7):1667–1675. https://doi.org/10.1016/j.nano.2015.04.012

    Article  PubMed  CAS  Google Scholar 

  12. Dokukin ME, Guz NV, Woodworth CD, Sokolov I (2015) Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer. New J Phys 17:033019

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iyer KS, Gaikwad RM, Woodworth CD, Volkov DO, Sokolov I (2012) Physical labeling of papillomavirus-infected, immortal, and cancerous cervical epithelial cells reveal surface changes at immortal stage. Cell Biochem Biophys 63(2):109–116. https://doi.org/10.1007/s12013-012-9345-2

    Article  CAS  PubMed Central  Google Scholar 

  14. Dokukin ME, Guz NV, Gaikwad RM, Woodworth CD, Sokolov I (2011) Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. Phys Rev Lett 107(2):028101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sokolov I (2009) Interaction between silica particles and human epithelial cells: atomic force microscopy and fluorescence study. In: Jelinek R (ed) Cellular and biomolecular recognition. Wiley-VCH Verlag GmbH & Co, NY, pp 69–96

    Chapter  Google Scholar 

  16. Iyer S, Woodworth CD, Gaikwad RM, Kievsky YY, Sokolov I (2009) Towards nonspecific detection of malignant cervical cells with fluorescent silica beads. Small 5(20):2277–2284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Iyer S, Gaikwad RM, Subba-Rao V, Woodworth CD, Sokolov I (2009) AFM detects differences in the surface brush on normal and cancerous cervical cells. Nat Nanotechnol 4:389–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Guz NV, Patel SJ, Dokukin ME, Clarkson B, Sokolov I (2016) Biophysical differences between chronic myelogenous leukemic quiescent and proliferating stem/progenitor cells. Nanomedicine 12(8):2429–2437. https://doi.org/10.1016/j.nano.2016.06.016

    Article  PubMed  CAS  Google Scholar 

  19. Guz NV, Patel SJ, Dokukin ME, Clarkson B, Sokolov I (2016) AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication. Nanotechnology 27(49):494005. https://doi.org/10.1088/0957-4484/27/49/494005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kumar S, Hoh JH (2004) Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem Biophys Res Commun 324(2):489–496

    Article  CAS  PubMed  Google Scholar 

  21. Brown HG, Hoh JH (1997) Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry 36(49):15035–15040

    Article  CAS  PubMed  Google Scholar 

  22. Kosaki R, Watanabe K, Yamaguchi Y (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res 59(5):1141–1145

    CAS  PubMed  Google Scholar 

  23. Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, Hamaguchi M, Kimata K (2002) Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A 99(6):3609–3614. https://doi.org/10.1073/pnas.052026799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Toole B (1982) Glycosaminoglycans in morphogenesis. In: Hay E (ed) Cell biology of the extracellular matrix. Plenum Press, New York, pp 259–294

    Google Scholar 

  25. Zimmerman E, Geiger B, Addadi L (2002) Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys J 82(4):1848–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8(8):850–855. https://doi.org/10.1038/nm742

    Article  CAS  PubMed  Google Scholar 

  27. Chen WY, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7(2):79–89

    Article  CAS  PubMed  Google Scholar 

  28. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med 11(11):1173–1179. https://doi.org/10.1038/nm1315

    Article  CAS  PubMed  Google Scholar 

  29. de la Motte CA, Hascall VC, Drazba J, Bandyopadhyay SK, Strong SA (2003) Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function. Am J Pathol 163(1):121–133

    Article  PubMed  PubMed Central  Google Scholar 

  30. Richards JS (2005) Ovulation: new factors that prepare the oocyte for fertilization. Mol Cell Endocrinol 234(1–2):75–79. https://doi.org/10.1016/j.mce.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  31. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539. https://doi.org/10.1038/nrc1391

    Article  PubMed  CAS  Google Scholar 

  32. Dokukin ME, Sokolov I (2017) Nanoscale compositional mapping of cells, tissues, and polymers with ringing mode of atomic force microscopy. Sci Rep 7(1):11828. https://doi.org/10.1038/s41598-017-12032-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

I.S. gratefully acknowledges funding for this work by NSF CMMI-1435655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sokolov, I., Dokukin, M.E. (2018). Imaging of Soft and Biological Samples Using AFM Ringing Mode. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics