Skip to main content

Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases

  • Protocol
  • First Online:
Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1821))

Abstract

Genetically encoded FRET-based biosensors are increasingly popular and useful tools for examining signaling pathways with high spatial and temporal resolution in living cells. Here, we show basic techniques used to characterize and to validate single-chain, genetically encoded Förster resonance energy transfer (FRET) biosensors of the Rho GTPase-family proteins. Methods described here are generally applicable to other genetically encoded FRET-based biosensors by modifying the tested conditions to include additional/different regulators and inhibitors, as appropriate for the specific protein of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgson L, Spiering D, Sabouri-Ghomi M, Dagliyan O, DerMardirossian C, Danuser G, Hahn KM (2016) FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol 12:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ioannou MS, Bell ES, Girard M, Chaineau M, Hamlin JN, Daubaras M, Monast A, Park M, Hodgson L, McPherson PS (2015) DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. J Cell Biol 208:629–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16:574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9:e96469

    Article  PubMed  PubMed Central  Google Scholar 

  5. Donnelly SK, Bravo-Cordero JJ, Hodgson L (2014) Rho GTPase isoforms in cell motility: don’t FRET, we have FRET. Cell Adhes Migr 8:526–534

    Article  Google Scholar 

  6. Bravo-Cordero JJ, Hodgson L, Condeelis JS (2014) Spatial regulation of tumor cell protrusions by RhoC. Cell Adhes Migr 8:263–267

    Article  Google Scholar 

  7. Zawistowski J, Sabouri-Ghomi M, Danuser G, Hahn K, Hodgson L (2013) A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. PLoS One 8:e79877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J (2011) A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 21:635–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg BJ, Gil-Henn H, Mader CC, Halo T, Yin T, Condeelis J, Machida K, Wu YI, Koleske AJ (2017) Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Mol Biol Cell 28:1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reinhard NR, van Helden SF, Anthony EC, Yin T, Wu YI, Goedhart J, Gadella TW, Hordijk PL (2016) Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells. Sci Rep 6:25502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kedziora KM, Leyton-Puig D, Argenzio E, Boumeester AJ, van Butselaar B, Yin T, Wu YI, van Leeuwen FN, Innocenti M, Jalink K, Moolenaar WH (2016) Rapid remodeling of invadosomes by Gi-coupled receptors: dissecting the role of rho GTPases. J Biol Chem 291:4323–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Unen J, Reinhard NR, Yin T, Wu YI, Postma M, Gadella TW, Goedhart J (2015) Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization. Sci Rep 5:14693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Timmerman I, Heemskerk N, Kroon J, Schaefer A, van Rijssel J, Hoogenboezem M, van Unen J, Goedhart J, Gadella TW Jr, Yin T, Wu Y, Huveneers S, van Buul JD (2015) A local VE-cadherin and Trio-based signaling complex stabilizes endothelial junctions through Rac1. J Cell Sci 128:3514

    Article  CAS  PubMed  Google Scholar 

  16. Martin K, Reimann A, Fritz RD, Ryu H, Jeon NL, Pertz O (2016) Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci Rep 6:21901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fritz RD, Menshykau D, Martin K, Reimann A, Pontelli V, Pertz O (2015) SrGAP2-dependent integration of membrane geometry and slit-Robo-repulsive cues regulates fibroblast contact inhibition of locomotion. Dev Cell 35:78–92

    Article  CAS  PubMed  Google Scholar 

  18. Fritz RD, Letzelter M, Reimann A, Martin K, Fusco L, Ritsma L, Ponsioen B, Fluri E, Schulte-Merker S, van Rheenen J, Pertz O (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6:rs12

    Article  CAS  PubMed  Google Scholar 

  19. Pertz O (2010) Spatio-temporal Rho GTPase signaling—where are we now? J Cell Sci 123:1841–1850

    Article  CAS  PubMed  Google Scholar 

  20. Miskolci V, Wu B, Moshfegh Y, Cox D, Hodgson L (2016) Optical tools to study the isoform-specific roles of small GTPases in immune cells. J Immunol 196:3479–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rizzo MA, Springer G, Segawa K, Zipfel WR, Piston DW (2006) Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microsc Microanal 12:238–254

    Article  CAS  PubMed  Google Scholar 

  22. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  23. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brunet JP, Cotte-Laffitte J, Linxe C, Quero AM, Geniteau-Legendre M, Servin A (2000) Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol 74:2323–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spiering D, Hodgson L (2012) Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 827:215–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609

    Article  PubMed  PubMed Central  Google Scholar 

  28. Takai Y, Kaibuchi K, Sasaki T, Tanaka K, Shirataki H, Nakanishi H (1994) Rho small G protein and cytoskeletal control. Princess Takamatsu Symp 24:338–350

    PubMed  CAS  Google Scholar 

  29. Frost JA, Khokhlatchev A, Stippec S, White MA, Cobb MH (1998) Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J Biol Chem 273:28191–28198

    Article  CAS  PubMed  Google Scholar 

  30. Del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4:232–239

    Article  CAS  PubMed  Google Scholar 

  31. del Pozo MA, Price LS, Alderson NB, Ren XD, Schwartz MA (2000) Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 19:2008–2014

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feig LA (1999) Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat Cell Biol 1:E25–E27

    Article  CAS  PubMed  Google Scholar 

  33. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  CAS  PubMed  Google Scholar 

  34. Hart MJ, Eva A, Zangrilli D, Aaronson SA, Evans T, Cerione RA, Zheng Y (1994) Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 269:62–65

    PubMed  CAS  Google Scholar 

  35. Waheed F, Speight P, Dan Q, Garcia-Mata R, Szaszi K (2012) Affinity precipitation of active Rho-GEFs using a GST-tagged mutant Rho protein (GST-RhoA(G17A)) from epithelial cell lysates. J Vis Exp 61:pii 3932

    Google Scholar 

  36. Wong KW, Mohammadi S, Isberg RR (2006) Disruption of RhoGDI and RhoA regulation by a Rac1 specificity switch mutant. J Biol Chem 281:40379–40388

    Article  CAS  PubMed  Google Scholar 

  37. Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol Chapter 14:Unit 14.11.1–26

    PubMed  Google Scholar 

  38. Hodgson L, Pertz O, Hahn KM (2008) Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors. Methods Cell Biol 85:63–81

    Article  CAS  PubMed  Google Scholar 

  39. Miskolci V, Hodgson L, Cox D (2017) Using fluorescence resonance energy transfer-based biosensors to probe Rho GTPase activation during phagocytosis. Methods Mol Biol 1519:125–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK, Yoon YJ, Cox D, Singer RH, Hodgson L (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bravo-Cordero JJ, Moshfegh Y, Condeelis J, Hodgson L (2013) Live cell imaging of Rho GTPase biosensors in tumor cells. Methods Mol Biol 1046:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frost JA, Xu S, Hutchison MR, Marcus S, Cobb MH (1996) Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol 16:3707–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by American Cancer Society Lee National Denim Day Postdoctoral Fellowship PF-15-135-01-CSM (S.D.), Irma T. Hirschl Career Scientist Award (L.H.), and NIH grants: T32GM007491 (V.M.); R01 GM071828 and P01 CA100324 (D.C.); and CA205262 (L.H.). A.M.G. was supported by the Summer Undergraduate Research Program (SURP) of the Albert Einstein College of Medicine, Graduate Division of Biomedical Sciences. Sara K. Donnelly and Veronika Miskolci contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianne Cox or Louis Hodgson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Donnelly, S.K., Miskolci, V., Garrastegui, A.M., Cox, D., Hodgson, L. (2018). Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 1821. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8612-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8612-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8611-8

  • Online ISBN: 978-1-4939-8612-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics