Skip to main content

Identification of microRNA Precursor-Associated Proteins

  • Protocol
  • First Online:
miRNA Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1823))

Abstract

MicroRNA (miRNA) biogenesis is regulated intricately at multiple levels. In addition to transcriptional control of pri-miRNA loci, sequence as well as structural features of the pri-miRNA-stem loop determine its processing efficiency by the endonucleases Drosha and Dicer. On the one hand, general features are necessary to allow a hairpin to be recognized by the processing machinery; on the other hand, specific sequence motifs of individual miRNA precursors can be read by RNA binding proteins (RBPs) that regulate processing, leading to increased or decreased levels of functional miRNAs. In a pulldown experiment using the pri-miRNA hairpin as immobilized bait, cognate RBPs can be isolated and analyzed by immunoblotting or mass spectrometry, allowing for the discovery or analysis of protein regulators of miRNA biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. S0092-8674(09)00008-7 [pii]. https://doi.org/10.1016/j.cell.2009.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179. https://doi.org/10.1146/annurev.med.59.053006.104707

    Article  PubMed  CAS  Google Scholar 

  5. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865. https://doi.org/10.1038/nrd4140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  PubMed  CAS  Google Scholar 

  7. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with MicroRNA-like functions. Mol Cell 32(4):519–528

    Article  CAS  PubMed  Google Scholar 

  8. Scott MS, Ono M (2011) From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 93:1987. S0300-9084(11)00183-0 [pii]. https://doi.org/10.1016/j.biochi.2011.05.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15(7):1233–1240. rna.1528909 [pii]. https://doi.org/10.1261/rna.1528909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hasler D, Lehmann G, Murakawa Y, Klironomos F, Jakob L, Grasser FA, Rajewsky N, Landthaler M, Meister G (2016) The lupus autoantigen La prevents Mis-channeling of tRNA fragments into the human MicroRNA pathway. Mol Cell 63(1):110–124. https://doi.org/10.1016/j.molcel.2016.05.026

    Article  PubMed  CAS  Google Scholar 

  11. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The Mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23):2162–2167

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  16. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, Kim VN, Woo JS (2015) Functional anatomy of the human microprocessor. Cell 161(6):1374–1387. https://doi.org/10.1016/j.cell.2015.05.010

    Article  PubMed  CAS  Google Scholar 

  18. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  CAS  PubMed  Google Scholar 

  19. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. nrg3462 [pii]. https://doi.org/10.1038/nrg3462

    Article  PubMed  CAS  Google Scholar 

  20. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    Article  CAS  PubMed  Google Scholar 

  22. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16(7):421–433. https://doi.org/10.1038/nrg3965

    Article  PubMed  CAS  Google Scholar 

  23. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134. nature05939 [pii]. https://doi.org/10.1038/nature05939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) C-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843. https://doi.org/10.1038/nature03677

    Article  PubMed  CAS  Google Scholar 

  25. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593

    Article  CAS  PubMed  Google Scholar 

  26. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743. S1097-2765(07)00318-8 [pii]. https://doi.org/10.1016/j.molcel.2007.05.017

    Article  PubMed  CAS  Google Scholar 

  27. Guil S, Caceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596. nsmb1250 [pii]. https://doi.org/10.1038/nsmb1250

    Article  PubMed  CAS  Google Scholar 

  28. Michlewski G, Guil S, Caceres JF (2010) Stimulation of pri-miR-18a processing by hnRNP A1. Adv Exp Med Biol 700:28–35

    Article  CAS  PubMed  Google Scholar 

  29. Kawahara Y, Mieda-Sato A (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 109(9):3347–3352. https://doi.org/10.1073/pnas.1112427109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu SL, Fu X, Huang J, Jia TT, Zong FY, Mu SR, Zhu H, Yan Y, Qiu S, Wu Q, Yan W, Peng Y, Chen J, Hui J (2015) Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme. Nucleic Acids Res 43(17):8516–8528. https://doi.org/10.1093/nar/gkv779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497(7448):244–248. https://doi.org/10.1038/nature12119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Faehnle CR, Walleshauser J, Joshua-Tor L (2014) Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514(7521):252–256. https://doi.org/10.1038/nature13553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138(4):696–708. S0092-8674(09)00964-7 [pii]. https://doi.org/10.1016/j.cell.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  34. Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16(10):1021–1025. nsmb.1676 [pii]. https://doi.org/10.1038/nsmb.1676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284. S1097-2765(08)00660-6 [pii]. https://doi.org/10.1016/j.molcel.2008.09.014

    Article  PubMed  CAS  Google Scholar 

  36. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549. rna.1155108 [pii]. https://doi.org/10.1261/rna.1155108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Treiber T, Treiber N, Plessmann U, Harlander S, Daiss JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G (2017) A compendium of RNA-binding proteins that regulate MicroRNA biogenesis. Mol Cell 66(2):270–284 e213. https://doi.org/10.1016/j.molcel.2017.03.014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research is supported by grants from the Deutsche Forschungsgemeinschaft (SFB 960, FOR2127, PP 1935, PP 1784) and the Bavarian Ministry for Education and Science (BioSysNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Meister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Treiber, T., Treiber, N., Meister, G. (2018). Identification of microRNA Precursor-Associated Proteins. In: Ørom, U. (eds) miRNA Biogenesis. Methods in Molecular Biology, vol 1823. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8624-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8624-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8623-1

  • Online ISBN: 978-1-4939-8624-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics