Skip to main content

Morpholino-Mediated Exon Skipping Targeting Human ACVR1/ALK2 for Fibrodysplasia Ossificans Progressiva

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal-dominant disorder characterized by progressive heterotopic ossification. More than 95% of cases are caused by a recurrent mutation (617G>A; R206H) of ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. Recent studies revealed that ACVR1R206H induces heterotopic ossification by aberrant activation in response to activin A. Because ACVR1R206H is a hyperactive receptor, a promising therapeutic strategy is to decrease the activity of ACVR1 in patients. Here, we describe a method to reduce ACVR1 expression in FOP patient cells by exon skipping in ACVR1 mRNAs using phosphorodiamidate morpholino oligomers (PMOs). This strategy can be applied to the screen to select antisense oligomers to knockdown not only ACVR1 but also genes which cause other autosomal-dominant genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pignolo RJ, Shore EM, Kaplan FS (2011) Fibrodysplasia ossificans progressiva: clinical and genetic aspects. Orphanet J Rare Dis 6:80. https://doi.org/10.1186/1750-1172-6-80

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chakkalakal SA, Uchibe K, Convente MR et al (2016) Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice with the human ACVR1(R206H) fibrodysplasia ossificans progressiva (FOP) mutation. J Bone Miner Res 31(9):1666–1675. https://doi.org/10.1002/jbmr.2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hino K, Horigome K, Nishio M et al (2017) Activin-a enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest 127(9):3339–3352. https://doi.org/10.1172/JCI93521

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shore EM, Xu M, Feldman GJ et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527. https://doi.org/10.1038/ng1783

    Article  CAS  PubMed  Google Scholar 

  5. Kaplan FS, Xu M, Seemann P et al (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30(3):379–390. https://doi.org/10.1002/humu.20868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hatsell SJ, Idone V, Wolken DM et al (2015) ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin a. Sci Transl Med 7(303):303ra137. https://doi.org/10.1126/scitranslmed.aac4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hino K, Ikeya M, Horigome K et al (2015) Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc Natl Acad Sci U S A 112(50):15438–15443. https://doi.org/10.1073/pnas.1510540112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dey D, Bagarova J, Hatsell SJ et al (2016) Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Sci Transl Med 8(366):366ra163. https://doi.org/10.1126/scitranslmed.aaf1090

    Article  CAS  PubMed  Google Scholar 

  9. Buczkowicz P, Hoeman C, Rakopoulos P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5):451–456. https://doi.org/10.1038/ng.2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor KR, Mackay A, Truffaux N et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46(5):457–461. https://doi.org/10.1038/ng.2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450. https://doi.org/10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee J, Yokota T (2016) Translational research in nucleic acid therapies for muscular dystrophies. In: Takeda S, Miyagoe-Suzuki Y, Mori-Yoshimura M (eds) Translational research in muscular dystrophy. Springer Japan, Tokyo, Japan, pp 87–102. https://doi.org/10.1007/978-4-431-55678-7_6

    Chapter  Google Scholar 

  13. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi S, Cai J, de Gorter DJ et al (2013) Antisense-oligonucleotide mediated exon skipping in activin-receptor-like kinase 2: inhibiting the receptor that is overactive in fibrodysplasia ossificans progressiva. PLoS One 8(7):e69096. https://doi.org/10.1371/journal.pone.0069096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Alberta Faculty of Medicine and Dentistry, International FOP Association/The Canadian FOP Network Research Grant, Gilbert K. Winter Funds, the Canadian Institutes of Health Research (CIHR), the Friends of Garrett Cumming Research Funds, HM Toupin Neurological Science Research Funds, the Muscular Dystrophy Canada, the Canada Foundation for Innovation, Alberta Enterprise and Advanced Education, Rare Disease Foundation/BC Children’s Hospital Foundation Microgrant, and the Women and Children’s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rika Maruyama or Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maruyama, R., Yokota, T. (2018). Morpholino-Mediated Exon Skipping Targeting Human ACVR1/ALK2 for Fibrodysplasia Ossificans Progressiva. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics