Skip to main content

Using In Vitro Ubiquitylation Assays to Estimate the Affinities of Ubiquitin-Conjugating Enzymes for Their Ubiquitin Ligase Partners

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

Ubiquitin ligases (E3s) function by binding to both a protein substrate and to ubiquitin-conjugating enzymes (E2s) bound to ubiquitin. E3s facilitate the transfer of ubiquitin from the E2 active site to an E3-bound substrate. Thus, the affinity of the interaction of an E2 with its E3 partner is of considerable interest. The purpose of this work is to (1) provide protocols for the purification of the human E2 Cdc34, as well as for some additional protein components needed for the assays described here whose purification protocols haven’t been described elsewhere in detail; (2) provide the researcher with critical information regarding the proper long-term storage of these enzymes to retain maximal activity; (3) provide a protocol to benchmark Cdc34 activity with previously described activity levels in the literature; and (4) provide a simple and rapid means of measuring E2 affinity for an E3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18(6):579–586. https://doi.org/10.1038/ncb3358

    Article  CAS  PubMed  Google Scholar 

  2. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157. https://doi.org/10.1146/annurev-biochem-060815-014922

    Article  CAS  PubMed  Google Scholar 

  3. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mirzaei H, Rogers RS, Grimes B, Eng J, Aderem A, Aebersold R (2010) Characterizing the connectivity of poly-ubiquitin chains by selected reaction monitoring mass spectrometry. Mol BioSyst 6(10):2004–2014. https://doi.org/10.1039/c005242f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Das R, Liang YH, Mariano J, Li J, Huang T, King A, Tarasov SG, Weissman AM, Ji X, Byrd RA (2013) Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J 32(18):2504–2516. https://doi.org/10.1038/emboj.2013.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buetow L, Gabrielsen M, Anthony NG, Dou H, Patel A, Aitkenhead H, Sibbet GJ, Smith BO, Huang DT (2015) Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin. Mol Cell 58(2):297–310. https://doi.org/10.1016/j.molcel.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  7. Eletr ZM, Kuhlman B (2007) Sequence determinants of E2-E6AP binding affinity and specificity. J Mol Biol 369(2):419–428. https://doi.org/10.1016/j.jmb.2007.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright JD, Mace PD, Day CL (2016) Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity. Nat Struct Mol Biol 23(1):45–52. https://doi.org/10.1038/nsmb.3142

    Article  CAS  PubMed  Google Scholar 

  9. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ (2009) Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139(5):957–968. https://doi.org/10.1016/j.cell.2009.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eletr ZM, Huang DT, Duda DM, Schulman BA, Kuhlman B (2005) E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat Struct Mol Biol 12(10):933–934. https://doi.org/10.1038/nsmb984

    Article  CAS  PubMed  Google Scholar 

  11. Huang DT, Schulman BA (2005) Expression, purification, and characterization of the E1 for human NEDD8, the heterodimeric APPBP1-UBA3 complex. Methods Enzymol 398:9–20. https://doi.org/10.1016/S0076-6879(05)98002-6

    Article  CAS  PubMed  Google Scholar 

  12. Chiba T (2005) In vitro systems for NEDD8 conjugation by Ubc12. Methods Enzymol 398:68–73. https://doi.org/10.1016/S0076-6879(05)98007-5

    Article  CAS  PubMed  Google Scholar 

  13. Beaudenon S, Huibregtse JM (2005) High-level expression and purification of recombinant E1 enzyme. Methods Enzymol 398:3–8. https://doi.org/10.1016/S0076-6879(05)98001-4

    Article  CAS  PubMed  Google Scholar 

  14. Zheng M, Liu J, Yang Z, Gu X, Li F, Lou T, Ji C, Mao Y (2010) Expression, purification and characterization of human ubiquitin-activating enzyme, UBE1. Mol Biol Rep 37(3):1413–1419. https://doi.org/10.1007/s11033-009-9525-3

    Article  CAS  PubMed  Google Scholar 

  15. Lorick KL, Jensen JP, Weissman AM (2005) Expression, purification, and properties of the Ubc4/5 family of E2 enzymes. Methods Enzymol 398:54–68. https://doi.org/10.1016/S0076-6879(05)98006-3

    Article  CAS  PubMed  Google Scholar 

  16. Li T, Pavletich NP, Schulman BA, Zheng N (2005) High-level expression and purification of recombinant SCF ubiquitin ligases. Methods Enzymol 398:125–142. https://doi.org/10.1016/S0076-6879(05)98012-9

    Article  CAS  PubMed  Google Scholar 

  17. Saha A, Deshaies RJ (2008) Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 32(1):21–31. https://doi.org/10.1016/j.molcel.2008.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pierce NW, Kleiger G, Shan SO, Deshaies RJ (2009) Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462(7273):615–619. https://doi.org/10.1038/nature08595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work, including the efforts of Spencer Hill, Connor Hill, and Gary Kleiger, was funded by HHS | National Institutes of Health (NIH) (R15 GM117555- 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Kleiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hill, S., Hill, C., Kleiger, G. (2018). Using In Vitro Ubiquitylation Assays to Estimate the Affinities of Ubiquitin-Conjugating Enzymes for Their Ubiquitin Ligase Partners. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics