Skip to main content

Meningeal Immunity, Drainage, and Tertiary Lymphoid Structure Formation

  • Protocol
  • First Online:
Tertiary Lymphoid Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1845))

Abstract

For decades, the brain has been considered an immune-privileged organ, meaning that the brain was mainly ignored by the immune system and that the presence of immune cells, notably of the adaptive arm, was a hallmark of pathological conditions. Over the past few decades, the definition of the immune privilege continues to be refined. There has been evidence accumulating that shows that the immune system plays a role in proper brain function. This evidence may represent an effective source of therapeutic targets for neurological disorders. In this chapter, we discuss the recent advances in understanding the immunity of the brain and describe how tertiary lymphoid structures can be generated in the central nervous system, which might represent a new avenue to treat neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy JB, Sturm E (1923) Conditions determining the transplantability of tissues in the brain. J Exp Med 38:183–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Shirai Y (1921) Transplantation of the rat sarcoma in adult heterogenous animals. Japn Med World 1:14–15

    Google Scholar 

  3. Willis RA (1935) Experiments on the intracerebral implantation of embryo tissues in rats. Proc R Soc Lond Ser B 117:400–412

    Article  Google Scholar 

  4. Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Mason DW, Charlton HM, Jones AJ et al (1986) The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of rodents. Neuroscience 19(3):685–694

    Article  PubMed  CAS  Google Scholar 

  6. Nicholas MK, Antel JP, Stefansson K, Arnason BG (1987) Rejection of fetal neocortical neural transplants by H-2 incompatible mice. J Immunol 139(7):2275–2283

    PubMed  CAS  Google Scholar 

  7. Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111–147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Weller RO, Subash M, Preston SD et al (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol Zurich Switz 18(2):253–266

    Article  CAS  Google Scholar 

  9. Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of Blue Dextran 2000. Exp Neurol 45(1):50–60

    Article  PubMed  CAS  Google Scholar 

  10. Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 25(Supplement 1):461–473

    Article  PubMed  Google Scholar 

  11. Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240(4):F319–F328

    PubMed  CAS  Google Scholar 

  12. Morris AWJ, Sharp MM, Albargothy NJ et al (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol (Berl) 131(5):725–736

    Article  CAS  Google Scholar 

  13. Rennels ML, Gregory TF, Blaumanis OR et al (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63

    Article  PubMed  CAS  Google Scholar 

  14. Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439

    PubMed  CAS  Google Scholar 

  15. Engelhardt B, Carare RO, Bechmann I et al (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol (Berl) 132(3):317–338

    Article  CAS  Google Scholar 

  16. Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18(2):123–131

    Article  PubMed  CAS  Google Scholar 

  17. Louveau A, Plog BA, Antila S et al (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 127(9):3210–3219

    Article  PubMed  PubMed Central  Google Scholar 

  18. Asgari M, Zélicourt D, de Kurtcuoglu V (2016) Glymphatic solute transport does not require bulk flow. Sci Rep 6:srep38635

    Article  CAS  Google Scholar 

  19. Smith AJ, Yao X, Dix JA et al (2017) Test of the “glymphatic” hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife 6:e27679

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iliff JJ, Wang M, Zeppenfeld DM et al (2013) Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J Neurosci 33(46):18,190–18,199

    Article  CAS  Google Scholar 

  21. Plog BA, Dashnaw ML, Hitomi E et al (2015) Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci Off J Soc Neurosci 35(2):518–526

    Article  CAS  Google Scholar 

  22. Lee H, Xie L, Yu M et al (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35(31):11,034–11,044

    Article  CAS  Google Scholar 

  23. Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    Article  PubMed  CAS  Google Scholar 

  24. Garbage NM (2013) Truck of the brain. Science 340(6140):1529–1530

    Article  Google Scholar 

  25. Carare RO, Bernardes-Silva M, Newman TA et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144

    Article  PubMed  CAS  Google Scholar 

  26. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 7:1–17

    CAS  Google Scholar 

  27. Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Peng W, Achariyar TM, Li B et al (2016) Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93:215–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gaberel T, Gakuba C, Goulay R et al (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45(10):3092–3096

    Article  PubMed  CAS  Google Scholar 

  30. Wang M, Ding F, Deng S et al (2017) Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci Off J Soc Neurosci 37(11):2870–2877

    Article  CAS  Google Scholar 

  31. Iliff JJ, Chen MJ, Plog BA et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16,180–16,193

    Article  CAS  Google Scholar 

  32. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240(4):F329–F336

    PubMed  CAS  Google Scholar 

  33. Clapham R, O’Sullivan E, Weller RO, Carare RO (2010) Cervical lymph nodes are found in direct relationship with the internal carotid artery: significance for the lymphatic drainage of the brain. Clin Anat N Y N 23(1):43–47

    CAS  Google Scholar 

  34. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19(6):480–488

    Article  PubMed  CAS  Google Scholar 

  35. Szentistványi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246(6 Pt 2):F835–F844

    PubMed  Google Scholar 

  36. Weller RO, Djuanda E, Yow H-Y, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol (Berl) 117(1):1–14

    Article  CAS  Google Scholar 

  37. Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol Heart Circ Physiol 261(4):H1197–H1204

    Article  CAS  Google Scholar 

  38. Clarkson BD, Walker A, Harris MG et al (2017) CCR7 deficient inflammatory dendritic cells are retained in the central nervous system. Sci Rep 7:42,856

    Article  CAS  Google Scholar 

  39. Goldmann J, Kwidzinski E, Brandt C et al (2006) T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 80(4):797–801

    Article  PubMed  CAS  Google Scholar 

  40. Hatterer E, Davoust N, Didier-Bazes M et al (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107(2):806–812

    Article  PubMed  CAS  Google Scholar 

  41. Kaminski M, Bechmann I, Pohland M et al (2012) Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol 92(1):31–39

    Article  PubMed  CAS  Google Scholar 

  42. Mohammad MG, Tsai VWW, Ruitenberg MJ et al (2014) Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest 124(3):1228–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218

    Article  PubMed  CAS  Google Scholar 

  44. Silver R, Silverman A-J, Vitković L, Lederhendler II (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19(1):25–31

    Article  PubMed  CAS  Google Scholar 

  45. Derecki NC, Cardani AN, Yang CH et al (2010) Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 207(5):1067–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goldmann T, Wieghofer P, Jordão M et al (2016) Origin, fate and dynamics of macrophages at CNS interfaces. Nat Immunol 17(7):797–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kivisäkk P, Mahad DJ, Callahan MK et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100(14):8389–8394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Korin B, Ben-Shaanan TL, Schiller M et al (2017) High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci 20(9):1300–1309

    Article  PubMed  CAS  Google Scholar 

  49. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Radjavi A, Smirnov I, Derecki N, Kipnis J (2014) Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry 19(5):531–533

    Article  PubMed  CAS  Google Scholar 

  51. Kipnis J (2016) Multifaceted interactions between adaptive immunity and the central nervous system. Science 353(6301):766–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635

    Article  PubMed  CAS  Google Scholar 

  53. Brombacher TM, Nono JK, De Gouveia KS et al (2017) IL-13-mediated regulation of learning and memory. J Immunol Baltim MD 1950 198(7):2681–2688

    CAS  Google Scholar 

  54. Filiano AJ, Xu Y, Tustison NJ et al (2016) Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535(7612):425–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kipnis J, Gadani S, Derecki NC (2012) Pro-cognitive properties of T cells. Nat Rev Immunol 12(9):663–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wolf SA, Steiner B, Akpinarli A et al (2009) CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol Baltim Md 1950 182(7):3979–3984

    CAS  Google Scholar 

  57. Ziv Y, Ron N, Butovsky O et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275

    Article  PubMed  CAS  Google Scholar 

  58. Blank T, Prinz M (2017) Type I interferon pathway in CNS homeostasis and neurological disorders. Glia 65(9):1397–1406

    Article  PubMed  Google Scholar 

  59. Choi GB, Yim YS, Wong H et al (2016) The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351(6276):933–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shin Yim Y, Park A, Berrios J et al (2017) Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549(7673):482–487

    Article  PubMed  CAS  Google Scholar 

  61. Srinivasan D, Yen J-H, Joseph DJ, Friedman W (2004) Cell type-specific interleukin-1beta signaling in the CNS. J Neurosci Off J Soc Neurosci 24(29):6482–6488

    Article  CAS  Google Scholar 

  62. Gh Popescu BF, Lucchinetti CF (2012) Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol 12:11

    Article  PubMed Central  Google Scholar 

  63. Howell OW, Reeves CA, Nicholas R et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain J Neurol 134(Pt 9):2755–2771

    Article  Google Scholar 

  64. Bartholomäus I, Kawakami N, Odoardi F et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269):94–98

    Article  PubMed  CAS  Google Scholar 

  65. Kwong B, Rua R, Gao Y et al (2017) T-bet-dependent NKp46(+) innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat Immunol 18(10):1117–1127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Russi AE, Walker-Caulfield ME, Guo Y et al (2016) Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun 73:100–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Benakis C, Brea D, Caballero S et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22(5):516–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Baruch K, Deczkowska A, Rosenzweig N et al (2016) PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med 22(2):135–137

    Article  PubMed  CAS  Google Scholar 

  69. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17(11):1371–1380

    Article  PubMed  CAS  Google Scholar 

  70. Wang Y, Oliver G (2010) Current views on the function of the lymphatic vasculature in health and disease. Genes Dev 24(19):2115–2126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Andres KH, von Düring M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175(3):289–301

    Article  CAS  Google Scholar 

  72. Foldi M, Csanda E, Obal F et al (1963) Uber Wirkungen der Unterbindung der Lymphgefasse und Lymphknoten des Halses auf das Zentralnervensystem im Tierversuch. Z Gesamte Exp Med 137:483–510

    Article  Google Scholar 

  73. Furukawa M, Shimoda H, Kajiwara T et al (2008) Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res Tokyo Jpn 29(6):289–296

    Article  CAS  Google Scholar 

  74. Gausas RE, Daly T, Fogt F (2007) D2-40 expression demonstrates lymphatic vessel characteristics in the dural portion of the optic nerve sheath. Ophthal Plast Reconstr Surg 23(1):32–36

    Article  PubMed  Google Scholar 

  75. Mascagni P, Bellini G (1816) Istoria Completa Dei Vasi Linfatici. Presso Eusebio Pacini e Figlio, Florence, p 195

    Google Scholar 

  76. Aspelund A, Antila S, Proulx ST et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Absinta M, Ha S-K, Nair G et al (2017) Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 3:6

    Google Scholar 

  78. Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  79. Johnston M, Zakharov A, Koh L, Armstrong D (2005) Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol 31(6):632–640

    Article  PubMed  CAS  Google Scholar 

  80. Brierley JB, Field EJ (1948) The connexions of the spinal sub-arachnoid space with the lymphatic system. J Anat 82(3):153–166

    PubMed  PubMed Central  Google Scholar 

  81. Kwon S, Janssen CF, Velasquez FC, Sevick-Muraca EM (2017) Fluorescence imaging of lymphatic outflow of cerebrospinal fluid in mice. J Immunol Methods 449:37–43

    Article  PubMed  CAS  Google Scholar 

  82. Antila S, Karaman S, Nurmi H et al (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214(12):3645–3667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Go KG, Houthoff HJ, Hartsuiker J et al (1986) Fluid secretion in arachnoid cysts as a clue to cerebrospinal fluid absorption at the arachnoid granulation. J Neurosurg 65(5):642–648

    Article  PubMed  CAS  Google Scholar 

  84. Kido DK, Gomez DG, Jr AMP, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11(5):221–228

    Article  PubMed  CAS  Google Scholar 

  85. Mawera G, Asala SA (1996) The function of arachnoid villi/granulations revisited. Cent Afr J Med 42(9):281–284

    PubMed  CAS  Google Scholar 

  86. Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63(6):867–875

    Article  PubMed  CAS  Google Scholar 

  87. Whedon JM, Glassey D (2009) Cerebrospinal fluid stasis and its clinical significance. Altern Ther Health Med 15(3):54–60

    PubMed  PubMed Central  Google Scholar 

  88. Boulton M, Young A, Hay J et al (1996) Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I-albumin clearance. Neuropathol Appl Neurobiol 22(4):325–333

    Article  PubMed  CAS  Google Scholar 

  89. Ma Q, Ineichen BV, Detmar M, Proulx ST (2017) Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 8(1):1434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239(1):195–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mollanji R, Bozanovic-Sosic R, Zakharov A et al (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282(6):R1593–R1599

    Article  PubMed  CAS  Google Scholar 

  92. Dieu-Nosjean M-C, Goc J, Giraldo NA et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580

    Article  PubMed  CAS  Google Scholar 

  93. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7(4):344–353

    Article  PubMed  CAS  Google Scholar 

  94. Pitzalis C, Jones GW, Bombardieri M, Jones SA (2014) Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14(7):447–462

    Article  PubMed  CAS  Google Scholar 

  95. Ruddle NH (2014) Lymphatic vessels and tertiary lymphoid organs. J Clin Invest 124(3):953–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mitsdoerffer M, Peters A. (2016) Tertiary lymphoid organs in central nervous system autoimmunity. Front Immunol [Internet]. Oct 25 [cited 2017 Nov 3];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078318/

  97. Compston A, Coles A (2002) Multiple sclerosis. Lancet Lond Engl 359(9313):1221–1231

    Article  Google Scholar 

  98. Compston A, Coles A (2008) Multiple sclerosis. Lancet Lond Engl 372(9648):1502–1517

    Article  CAS  Google Scholar 

  99. Blauth K, Owens GP, Bennett JL. (2015) The ins and outs of B cells in multiple sclerosis. Front Immunol [Internet]. [cited 2017 Nov 3];6. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2015.00565/full

  100. Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F (2013) Neurons as targets for T cells in the nervous system. Trends Neurosci 36(6):315–324

    Article  PubMed  CAS  Google Scholar 

  101. Weiner HL (2004) Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol 61(10):1613–1615

    Article  PubMed  Google Scholar 

  102. Kooi E-J, Geurts JJG, van Horssen J et al (2009) Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis. J Neuropathol Exp Neurol 68(9):1021–1028

    Article  PubMed  CAS  Google Scholar 

  103. Magliozzi R, Howell O, Vora A et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain J Neurol 130(Pt 4):1089–1104

    Google Scholar 

  104. Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol Zurich Switz 14(2):164–174

    Article  Google Scholar 

  105. Lucchinetti CF, Popescu BFG, Bunyan RF et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365(23):2188–2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Palanichamy A, Apeltsin L, Kuo TC et al (2014) Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 6(248):248ra106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Stern JNH, Yaari G, Vander Heiden JA et al (2014) B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 6(248):248ra107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lehmann-Horn K, Wang S-Z, Sagan SA et al (2016) B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1(20):e87234

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bettelli E, Baeten D, Jäger A et al (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116(9):2393–2402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Columba-Cabezas S, Griguoli M, Rosicarelli B et al (2006) Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin beta receptor-Ig fusion protein. J Neuroimmunol 179(1–2):76–86

    Article  PubMed  CAS  Google Scholar 

  111. Dang AK, Tesfagiorgis Y, Jain RW, et al (2015) Meningeal infiltration of the spinal cord by non-classically activated B cells is associated with chronic disease course in a spontaneous B cell-dependent model of cns autoimmune disease. Front Immunol [Internet]. Sep 15 [cited 2017 Nov 3];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584934/

  112. Kuerten S, Schickel A, Kerkloh C et al (2012) Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol (Berl) 124(6):861–873

    Article  CAS  Google Scholar 

  113. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148(1–2):11–23

    Article  PubMed  CAS  Google Scholar 

  114. Peters A, Pitcher LA, Sullivan JM et al (2011) Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35(6):986–996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Pikor NB, Astarita JL, Summers-Deluca L et al (2015) Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43(6):1160–1173

    Article  PubMed  CAS  Google Scholar 

  116. Sautès-Fridman C, Lawand M, Giraldo NA, et al (2016) Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol [Internet]. Oct 3 [cited 2018 Jan 27];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046074/

Download references

Acknowledgments

We would like to thank D. Preston for editing the manuscript and L. Louveau for the artwork.

Funding: This work was supported by LE&RN Postdoctoral Fellowship Award to A.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Louveau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Louveau, A. (2018). Meningeal Immunity, Drainage, and Tertiary Lymphoid Structure Formation. In: Dieu-Nosjean, MC. (eds) Tertiary Lymphoid Structures. Methods in Molecular Biology, vol 1845. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8709-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8709-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8708-5

  • Online ISBN: 978-1-4939-8709-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics