Skip to main content

Mesoscale Computational Modeling of Protein-Membrane Interactions Based on Continuum Mean-Field Theory

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

Quantitative computational modeling of protein-membrane interactions is of great importance as it aids in the interpretation of experimental results and enables design and exploration of new experimental systems. This review describes one such computational approach conceived specifically to treat electrostatically driven interactions between a lipid membrane and a protein (or protein domains) adsorbing onto the membrane. The methodology is based on self-consistent minimization of the governing free energy functional which is expressed in the mean-field approximation and has contributions from electrostatic interactions as well as from mixing entropy of lipids in the membrane and ions in the solution. The method enables calculation of the free energy of the binding process and quantification of the steady-state lipid distribution around the adsorbing protein. The extension of the method to include membrane deformation degrees of freedom further allows calculation of the equilibrium bilayer shape upon the protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    Article  CAS  Google Scholar 

  2. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  Google Scholar 

  3. De Craene JO, Bertazzi DL, Bar S, Friant S (2017) Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci 18. https://doi.org/10.3390/ijms18030634

    Article  Google Scholar 

  4. Record MT, Anderson CF, Lohman TM (1978) Thermodynamic analysis of ion effects on binding and conformational equilibria of proteins and nucleic-acids - roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys 11:103–178

    Article  CAS  Google Scholar 

  5. Wagner K, Harries D, May S, Kahl V, Radler JO, Ben-Shaul A (2000) Direct evidence for counterion release upon cationic lipid-DNA condensation. Langmuir 16:303–306

    Article  CAS  Google Scholar 

  6. Sharp KA, Friedman RA, Misra V, Hecht J, Honig B (1995) Salt effects on polyelectrolyte-ligand binding - comparison of Poisson-Boltzmann, and limiting law Counterion binding models. Biopolymers 36:245–262

    Article  CAS  Google Scholar 

  7. Parsegian VA, Gingell D (1972) On the electrostatic interaction across a salt solution between two bodies bearing unequal charges. Biophys J 12:1192–1204

    Article  CAS  Google Scholar 

  8. May S, Harries D, Ben-Shaul A (2000) The phase behavior of cationic lipid-DNA complexes. Biophys J 78:1681–1697

    Article  CAS  Google Scholar 

  9. May S, Harries D, Ben-Shaul A (2000) Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. Biophys J 79:1747–1760

    Article  CAS  Google Scholar 

  10. Harries D, May S, Gelbart WM, Ben-Shaul A (1998) Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys J 75:159–173

    Article  CAS  Google Scholar 

  11. Khelashvili G, Weinstein H, Harries D (2008) Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization. Biophys J 94:2580–2597

    Article  CAS  Google Scholar 

  12. Khelashvili G, Harries D, Weinstein H (2009) Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption. Biophys J 97:1626–1635

    Article  CAS  Google Scholar 

  13. Harries D, May S, Ben-Shaul A (2003) Curvature and charge modulations in lamellar DNA-lipid complexes. J Phys Chem B 107:3624–3630

    Article  CAS  Google Scholar 

  14. May S, Harries D, Ben-Shaul A (2002) Macroion-induced compositional instability of binary fluid membranes. Phys Rev Lett 89:268102

    Article  Google Scholar 

  15. Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 19:301–332

    Article  CAS  Google Scholar 

  16. Borukhov I, Andelman D, Orland H (1997) Steric effects in electrolytes: a modified Poisson-Boltzmann equation. Phys Rev Lett 79:435–438

    Article  CAS  Google Scholar 

  17. Murray D, Arbuzova A, Honig B, McLaughlin S (2002) The role of electrostatic and nonpolar interactions in the association of peripheral proteins with membranes. In: Current topics in membranes, Peptide-lipid interactions, vol 52. Elsevier, Amsterdam, pp 277–307

    Google Scholar 

  18. Chaikin PM, Lubensky TC (2000) Principles of condensed matter physics. Cambridge university press, Cambridge

    Google Scholar 

  19. Hill TL (1987) An introduction to statistical thermodynamics. Dover Publications, Mineola, NY

    Google Scholar 

  20. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  CAS  Google Scholar 

  21. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr (2013) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  Google Scholar 

  22. Antonny B, Burd C, De Camilli P, Chen E, Daumke O, Faelber K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kozlov MM, Lenz M, Low HH, McMahon H, Merrifield C, Pollard TD, Robinson PJ, Roux A, Schmid S (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284

    Article  CAS  Google Scholar 

  23. Qualmann B, Koch D, Kessels MM (2011) Let's go bananas: revisiting the endocytic BAR code. EMBO J 30:3501–3515

    Article  CAS  Google Scholar 

  24. Nguyen N, Shteyn V, Melia TJ (2017) Sensing membrane curvature in macroautophagy. J Mol Biol 429:457–472

    Article  CAS  Google Scholar 

  25. Madsen KL, Bhatia VK, Gether U, Stamou D (2010) BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett 584:1848–1855

    Article  CAS  Google Scholar 

  26. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703

    Article  CAS  Google Scholar 

  27. Khelashvili G, Galli A, Weinstein H (2012) Phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids regulate the phosphorylation of syntaxin N-terminus by modulating both its position and local structure. Biochemistry 51:7685–7698

    Article  CAS  Google Scholar 

  28. Doktorova M, Heberle FA, Kingston RL, Khelashvili G, Cuendet MA, Wen Y, Katsaras J, Feigenson GW, Vogt VM, Dick RA (2017) Cholesterol promotes protein binding by affecting membrane electrostatics and solvation properties. Biophys J in press 113:2004. https://doi.org/10.1016/j.bpj.2017.08.055.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GK is grateful to Profs. Harel Weinstein and Daniel Harries for their guidance and support during the development of the computational methodology described in this work. GK is also thankful to Nathan Baker for his advice on modifying APBS and his valuable feedback on the mean-field model. GK is supported by the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational Biomedicine at Weill Cornell Medical College through gratefully acknowledged support from the 1923 Fund. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Khelashvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khelashvili, G. (2019). Mesoscale Computational Modeling of Protein-Membrane Interactions Based on Continuum Mean-Field Theory. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics