Skip to main content

Determining the Intracellular Organization of Organelles

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Many studies have found alterations in the positioning and morphology of intracellular organelles under different experimental conditions. Although the precise quantification of these changes is challenging, it is strongly facilitated in single cells that are seeded on micropatterned substrates. Indeed, the controlled microenvironment of the cell leads to a reproducible distribution of organelles, simplifying image analysis and minimizing the number of cells required for robust phenotypes. Here, we outline how alterations in the intracellular organization of lysosomes and mitochondria, as a result of different growth conditions, can be efficiently quantified in cells seeded on adhesive micropatterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598

    Article  CAS  Google Scholar 

  2. Molina AJA, Shirihai OS (2009) Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein. Methods Enzymol 457:289–304

    Article  CAS  Google Scholar 

  3. Liberali P, Snijder B, Pelkmans L (2014) A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157(6):1473–1487

    Article  CAS  Google Scholar 

  4. Carter SB (1967) Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. Exp Cell Res 48(1):189–193

    Article  CAS  Google Scholar 

  5. Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng; 2:227‑56.

    Article  CAS  Google Scholar 

  6. Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123(24):4201–4213

    Article  Google Scholar 

  7. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  8. Schauer K, Duong T, Bleakley K, Bardin S, Bornens M, Goud B (2010) Probabilistic density maps to study global endomembrane organization. Nat Methods 7(7):560–566

    Article  CAS  Google Scholar 

  9. Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci 103(52):19771–19776

    Article  Google Scholar 

  10. Duong T, Goud B, Schauer K (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. Proc Natl Acad Sci 109(22):8382–8387

    Article  CAS  Google Scholar 

  11. Vonaesch P, Cardini S, Sellin ME, Goud B, Hardt W-D, Schauer K (2013) Quantitative insights into actin rearrangements and bacterial target site selection from Salmonella Typhimurium infection of micropatterned cells. Cell Microbiol 15(11):1851–1865

    CAS  PubMed  Google Scholar 

  12. Grossier J-P, Xouri G, Goud B, Schauer K (2014) Cell adhesion defines the topology of endocytosis and signaling. EMBO J 33(1):35–45

    Article  CAS  Google Scholar 

  13. Schauer K, Grossier J-P, Duong T, Chapuis V, Degot S, Lescure A et al (2014) A novel organelle map framework for high-content cell morphology analysis in high throughput. J Biomol Screen 19(2):317–324

    Article  Google Scholar 

  14. Rasband W ImageJ. U. S. National Institutes of Health, Bethesda, MD, pp 1997–2016 https://imagej.nih.gov/ij/

  15. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0, URL http://www.R-project.org

    Google Scholar 

  16. van Dongen SFM, Maiuri P, Marie E, Tribet C, Piel M (2013) Triggering cell adhesion, migration or shape change with a dynamic surface coating. Adv Mater 25(12):1687–1691

    Article  Google Scholar 

  17. Kolodziej CM, Kim SH, Broyer RM, Saxer SS, Decker CG, Maynard HD (2012) Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns. J Am Chem Soc 134(1):247–255

    Article  CAS  Google Scholar 

  18. Duong T (2007) ks: Kernel density estimation and Kernel discriminant analysis for multivariate data in R. J Stat Softw 21:1–16

    Article  Google Scholar 

  19. Schauer K, Duong T, Gomes-Santos CS, Goud B (2014) Chapter 20 - Studying Intracellular trafficking pathways with probabilistic density maps. In: Perez F, Stephens DJ (eds) Methods in cell biology, vol 118. Academic Press, San Diego, CA, pp 325–343

    Google Scholar 

  20. Grossier J-P, Goud B, Schauer K (2014) Probabilistic density maps to study the spatial organization of endocytosis. Methods Mol Biol Clifton NJ 1174:117–138

    Article  Google Scholar 

  21. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji - an open source platform for biological image analysis. Nat Methods 9(7):676

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the Cell and Tissue Imaging Facility (PICT-IBiSA @Burg and @Pasteur) and Nikon Imaging Center, Institut Curie (Paris), member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04). We thank Tarn Duong for advices on statistical analysis and kernel density estimation and Jean Philippe Grossier for providing scripts. This project was supported by grants from INFECT-ERA (ANR-14-IFEC-0002-04), the Centre National de la Recherche Scientifique and Institut Curie. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Schauer .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Annex 1

Macro1: Find Center of Micropatterns (TXT 1 kb)

Annex 2

Macro2: Batch Mode Segmentation Using 3D Object Counter (TXT 1 kb)

Annex 3

R Source File for KDE Computation (TXT 6 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Latgé, B., Schauer, K. (2019). Determining the Intracellular Organization of Organelles. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics