Skip to main content

l-[Methyl-11C] Methionine-Positron-Emission Tomography (MET-PET)

  • Protocol
  • First Online:
Methionine Dependence of Cancer and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1866))

Abstract

Methionine (MET) dependence is a cancer-specific metabolic abnormality that is due to MET overuse for aberrant transmethylation reactions. [11C]-MET is very useful for positron-emission tomography (PET) due to MET overuse in malignant tumors. Many benefits of MET-PET have been demonstrated. MET-PET can differentiate recurrent glioma and necrosis. [11C]-MET-PET can also predict prognosis in gliomas better than [18F]-FDG PET. [11C]-MET-PET is better than MRI for predicting survival in low-grade glioma (LGG). MET-PET has greater specificity for detecting residual tumor after surgery than MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman RM (2017) The wayward methyl group and the cascade to cancer. Cell Cycle 16:825–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine dependent cancer cells. Proc Natl Acad Sci U S A 79:4248–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stern PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors in vitro 20:663–670

    CAS  PubMed  Google Scholar 

  6. Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638

    PubMed  PubMed Central  Google Scholar 

  7. Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525

    PubMed  PubMed Central  Google Scholar 

  8. Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, Kiyuna T, Miyake M, Murakami T, Chmielowski S, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2018) Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget 9:915–923

    PubMed  Google Scholar 

  9. Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Murakami T, Kiyuna T, Miyake K, Miyake M, Singh AS, Eckhadt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Singh RS, Eilber FC, Hoffman RM (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173

    Article  CAS  PubMed  Google Scholar 

  10. Igarashi K, Li S, Han Q, Tan Y, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Li Y, Nelson SD, Dry SM, Singh AS, Elliott I, Russell TA, Eckhadt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2018) Growth of a doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119:3537–3544

    Article  CAS  PubMed  Google Scholar 

  11. Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM (2018) Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 9:11119–11125

    PubMed  PubMed Central  Google Scholar 

  12. Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckhardt MA, Unno M, Eilber FC, Hoffman RM (2018) Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for clinical cancer therapy and prevention. Cell Cycle 17:356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  14. Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  CAS  PubMed  Google Scholar 

  15. Mineura K, Sasajima T, Suda Y, Kowada M, Shishido F, Uemura K (1990) Amino acid study of cerebral gliomas using positron emission tomography—analysis of (11C-methyl)-L-methionine uptake index. Neurol Med Chir 30:997–1002

    Article  CAS  Google Scholar 

  16. Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, Mineura K, Uemura K (1996) Clinical positron emission tomography for brain tumors: comparison of fluorodeoxyglucose F 18 and L-methyl-11C-methionine. Am J Neuroradiol 17:345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53

    Article  CAS  PubMed  Google Scholar 

  18. Tovi M, Lilja A, Bergstrom M, Ericsson A, Bergstrom K, Hartman M (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 1:417–429

    Article  Google Scholar 

  19. Willemsen AT, van Waarde A, Paans AM, Pruim J, Luurtsema G, Go KG, Vaalburg W (1995) In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-11C]-tyrosine and PET. J Nucl Med 36:411–419

    CAS  PubMed  Google Scholar 

  20. Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  21. Tamura K, Yoshikawa K, Ishikawa H, Hasebe M, Tsuji H, Yanagi T, Suzuki K, Kubo A, Tsujii H (2009) Carbon-11-methionine PET imaging of choroidal melanoma and the time course after carbon ion beam radiotherapy. Anticancer Res 29:1507–1514

    PubMed  Google Scholar 

  22. Lilja A, Lundqvist H, Olsson Y, Spannare B, Gullberg P, Langstrom B (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol 30:121–128

    Article  CAS  PubMed  Google Scholar 

  23. Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N et al (1995) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and l-methyl-11C-methionine. Am J Neuroradiol 17:345–353

    Google Scholar 

  24. Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H et al (1991) Clinical value of PET withl8F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202

    Article  CAS  PubMed  Google Scholar 

  25. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, Salmon I, Brotchi J, Goldman S (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750

    Article  PubMed  Google Scholar 

  26. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18:291–296

    Article  CAS  PubMed  Google Scholar 

  27. García-Garzon JR, Villasboas-Rosciolesi D, Baquero M, Bassa P, Soler M, Riera E (2016) A false-negative case of primary central nervous system lymphoma on 11C-methionine PET and intense 18F-FDG uptake. Clin Nucl Med 41:664–665

    Article  PubMed  Google Scholar 

  28. Bosnyák E, Kamson DO, Robinette NL, Barger GR, Mittal S, Juhász C (2016) Tryptophan PET predicts spatial and temporal patterns ofpost-treatment glioblastoma progression detected by contrast-enhanced MRI. J Neuro-Oncol 126:317–325

    Article  Google Scholar 

  29. Jung TY, Min JJ, Bom HS, Jung S, Kim IY, Lim SH, Kim DY, Kwon SY (2017) Prognostic value of post-treatment metabolic tumor volume from 11C-methionine PET/CT in recurrent malignant glioma. Neurosurg Rev 40:223–229

    Article  PubMed  Google Scholar 

  30. Kardan A, Satter M (2016) Advanced methionine positron-emission tomography imaging for brain tumor diagnosis, surgical planning, and treatment. In: Handbook of Neuro-oncology Neuroimaging, Academic Press, Cambridge, MA, pp 371–384

    Chapter  Google Scholar 

  31. Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, Shiga T, Hattori N, Tanaka S, Kuge Y, Tamaki N (2015) Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging 42:1071–1080

    Article  CAS  PubMed  Google Scholar 

  32. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW, Lee MC (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  33. Zhao C, Zhang Y, Wang J (2014) A meta-analysis on the diagnostic performance of (18)F-FDG and (11)C-methionine PET for differentiating brain tumors. Am J Neuroradiol 35:1058–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu W, Gao L, Shao A, Zheng J, Zhang J (2017) The performance of 11C-methionine PET in the differential diagnosis of glioma recurrence. Oncotarget 8:91030–91039

    PubMed  PubMed Central  Google Scholar 

  35. Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC (2012) 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 53:1709–1715

    Article  PubMed  Google Scholar 

  36. Chen W, Silverman DH (2008) Advances in evaluation of primary brain tumors. Semin Nucl Med 38:240–250

    Article  PubMed  Google Scholar 

  37. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18

    Article  PubMed  Google Scholar 

  38. Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Löttgen J, Thiel A, Wienhard K, Heiss WD (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  CAS  PubMed  Google Scholar 

  39. Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74

    Article  CAS  PubMed  Google Scholar 

  40. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, Slart RH (2013) Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40:615–635

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoffman, R.M. (2019). l-[Methyl-11C] Methionine-Positron-Emission Tomography (MET-PET). In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics