Skip to main content

Homocysteine, Thioretinaco Ozonide, and Oxidative Phosphorylation in Cancer and Aging: A Proposed Clinical Trial Protocol

  • Protocol
  • First Online:
Methionine Dependence of Cancer and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1866))

Abstract

The objective of the proposed clinical interventional trial is to demonstrate the efficacy of a novel therapeutic strategy in subjects with cancer and hyperhomocysteinemia. Following discovery of abnormal homocysteine thiolactone metabolism in cultured malignant cells, thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone, and thioretinaco, the complex formed from cobalamin and thioretinamide, were demonstrated to have antineoplastic, anticarcinogenic, and anti-atherogenic properties in animal models. Retinol, ascorbate, and homocysteine thiolactone are necessary for biosynthesis of thioretinamide and thioretinaco by cystathionine synthase and for formation of thioretinaco ozonide from thioretinamide, cobalamin, and ozone. Thioretinaco ozonide is required for prevention of abnormal oxidative metabolism, aerobic glycolysis, suppressed immunity, and hyperhomocysteinemia in cancer.

The pancreatic enzyme therapy of cancer promotes catabolism of proteins, nucleic acids, and glycosaminoglycans with excess homocysteinylated amino groups resulting from abnormal accumulation of homocysteine thiolactone in malignant cells. Dietary deficiencies of pyridoxal, folate, cobalamin, and nitriloside contribute to hyperhomocysteinemia in cancer, and in protein energy malnutrition. A deficiency of dietary sulfur amino acids downregulates cystathionine synthase, causing hyperhomocysteinemia.

The organic sulfur compound diallyl trisulfide increases hydrogen sulfide production from homocysteine in animal models, inhibits Stat3 signaling in cancer stem cells, and produces apoptosis of malignant cells. The furanonaphthoquinone compound napabucasin inhibits Stat3 signaling and causes mitochondrial dysfunction, decreased oxidative phosphorylation, and apoptosis of malignant cells. The protocol of the proposed clinical trial in subjects with myelodysplasia consists of thioretinamide and cobalamin as precursors of thioretinaco ozonide, combined with pancreatic enzyme extracts, diallyl trisulfide, napabucasin, nutritional modification to minimize processed foods, vitamin supplements, essential amino acids, and beneficial dietary fats and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCully KS (1993) Chemical pathology of homocysteine. I. Atherogenesis. Ann Clin Lab Sci 23:477–493

    CAS  PubMed  Google Scholar 

  2. McCully KS (1994) Chemical pathology of homocysteine. II. Carcinogenesis and homocysteine thiolactone metabolism. Ann Clin Lab Sci 24:27–59

    CAS  PubMed  Google Scholar 

  3. McCully KS (1994) Chemical pathology of homocysteine. III. Cellular function and aging. Ann Clin Lab Sci 24:134–152

    CAS  PubMed  Google Scholar 

  4. McCully KS (2009) Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 39:219–232

    CAS  PubMed  Google Scholar 

  5. McCully KS (2011) Chemical pathology of homocysteine. V. Thioretinamide, thioretinaco, and cystathionine synthase function in degenerative diseases. Ann Clin Lab Sci 41:300–313

    Google Scholar 

  6. McCully KS (2016) Homocysteine metabolism, atherosclerosis, and diseases of aging. Compr Physiol 6:401–475

    Google Scholar 

  7. Blom H (2001) Diseases and drugs associated with hyperhomocysteinemia. In: Carmel R, Jacobsen DW (eds) Homocysteine in health and disease. Cambridge University Press, Cambridge, pp 331–340

    Google Scholar 

  8. McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanwar YS, Manaligod JR, Wong WK (1976) Morphologic studies in a patient with homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency. Pediatr Res 10:598–609

    Article  CAS  PubMed  Google Scholar 

  10. McCully KS (1976) Homocysteine thiolactone metabolism in malignant cells. Cancer Res 36:3198–3202

    CAS  PubMed  Google Scholar 

  11. Jakubowski H, Goldman E (1993) Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured malignant cells. FEBS Lett 317:237–240

    Article  CAS  PubMed  Google Scholar 

  12. McCully KS (1981) Homocysteine thiolactone as a tumor promoter. US Patent 4,255,443, 10 Mar 1981

    Google Scholar 

  13. McCully KS, Clopath P (1977) Homocysteine compounds which influence the growth of a malignant neoplasm. Chemotherapy 23:44–49

    Article  CAS  PubMed  Google Scholar 

  14. McCully KS (1983) Homocysteine thiolactone salts and use thereof as antineoplastic agents. US Patent 4,383,994, 17 May 1983

    Google Scholar 

  15. McCully KS, Vezeridis MP (1987) Antineoplastic activity of a rhodium trichloride complex of oxalyl homocysteine thiolactone. Cancer Investig 5:25–30

    Article  CAS  Google Scholar 

  16. McCully KS, Vezeridis MP (1985) Antineoplastic activity of N-maleamide homocysteine thiolactone amide encapsulated within liposomes. Proc Soc Exp Biol Med 180:57–61

    Article  CAS  PubMed  Google Scholar 

  17. McCully KS, Vezeridis MP (1987) Chemopreventive and antineoplastic activity of N-homocysteine thiolactonyl retinamide. Carcinogenesis 8:1559–1562

    Article  CAS  PubMed  Google Scholar 

  18. McCully KS, Vezeridis MP (1989) Chemopreventive effect of N-homocysteine thiolactonyl retinamido cobalamin on carcinogenesis by ethyl carbamate in mice. Proc Soc Exp Biol Med 191:346–351

    Article  CAS  PubMed  Google Scholar 

  19. Kazimir M, Wilson FR (2002) Prevention of homocysteine thiolactone induced atherosclerosis in rats. Res Commun Molec Pharmacol 5(6):179–198

    Google Scholar 

  20. McCully KS (1996) Thioretinaco ozonide and enhanced biological activity of thioretinaco ozonide in combination with interferon. US Patent 5,565,558, 15 Oct 1996

    Google Scholar 

  21. McCully KS (2004) Enhanced liposomal thioretinaco ozonide compositions and liposomal carrier. US Patent 6,696,082, 24 Feb 2004

    Google Scholar 

  22. McCully KS (1971) Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature 231:391–392

    Article  CAS  PubMed  Google Scholar 

  23. Clopath P, Smith VC, McCully KS (1976) Growth promotion by homocysteic acid. Science 192:372–374

    Article  CAS  PubMed  Google Scholar 

  24. McCully KS (1975) Growth disorders and homocysteine metabolism. Ann Clin Lab Sci 5:147–152

    CAS  PubMed  Google Scholar 

  25. McCully KS (1972) Macromolecular basis for homocysteine-induced changes in proteoglycan structure in growth and arteriosclerosis. Am J Pathol 66:83–95

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanck A (1986) Ascorbic acid and cancer. In: Myeskens FL Jr, Prasad KN Eds, Vitamins and cancer, Humana Press, Clifton, NJ, pp 365–397

    Chapter  Google Scholar 

  27. Warburg O (1931) The oxygen-transferring ferment of respiration. Nobel Lecture, 10 Dec 1931

    Google Scholar 

  28. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  29. Schon R, Menke KH, Negelein E (1961) The influence of heavy metal ions on the Ehrlich ascites tumor cells of mice and the effect of cysteine. Z Physiol Chem 323:155–163

    Article  CAS  Google Scholar 

  30. Cameron E, Campbell A (1974) The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact 9:285–315

    Article  CAS  PubMed  Google Scholar 

  31. Cameron E, Pauling L (1978) Supplemental ascorbate in the supportive treatment of cancer: reevaluation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 75:4538–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ingenbleek Y, Hardillier E, Jung L (2002) Subclinical malnutrition is a determinant of hyperhomocysteinemia. Nutrition 18:40–46

    Article  CAS  PubMed  Google Scholar 

  33. Ingenbleek Y, McCully KS (2012) Vegetarianism produces subclinical malnutrition, hyperhomocysteinemia and atherogenesis. Nutrition 28:148–152

    Article  CAS  PubMed  Google Scholar 

  34. Ingenbleek Y, De Visscher M, De Nayer P et al (1972) Measurement of prealbumin as index of protein-calorie malnutrition. Lancet 2(7768):106–109

    Article  CAS  PubMed  Google Scholar 

  35. Ingenbleek Y (2009) Hyperhomocysteinemia is a biomarker for sulfur-deficiency in human morbidities. Open Clin Chem J 2:49–60

    Article  CAS  Google Scholar 

  36. Carballal S, Madzelan P, Zinola CF et al (2008) Dioxygen reactivity and heme redox potential of truncated human cystathionine β-synthase. Biochemistry 47:3194–3202

    Article  CAS  PubMed  Google Scholar 

  37. Smith TJ, Drummond GS (1991) Retinoic acid can enhance the stimulation by thyroid hormone of heme oxygenase activity in the liver of thyroidectomized rats. Biochim Biophys Acta 1075:119–122

    Article  CAS  PubMed  Google Scholar 

  38. Samuel W, Kutty RK, Nagineni S et al (2006) N-(4-hydroxyphenyl) retinamide induces apoptosis in human retinal pigment epithelial cells: retinoic acid receptors regulate apoptosis, reactive oxygen species generation, and the expression of heme oxygenase-1 and Gadd153. J Cell Physiol 209:854–865

    Article  CAS  PubMed  Google Scholar 

  39. Hail N Jr, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced apoptosis. Apoptosis 11:1677–1694

    Article  CAS  PubMed  Google Scholar 

  40. Miles EW, Kraus JP (2004) Cystathionine β-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 279:29871–29874

    Article  CAS  PubMed  Google Scholar 

  41. Kim J, Hong SJ, Park JH et al (2009) Expression of cystathionine β-synthase is downregulated in hepatocellular carcinoma and associated with poor prognosis. Oncol Rep 21:1449–1454

    CAS  PubMed  Google Scholar 

  42. Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278:1073–1077

    Article  CAS  PubMed  Google Scholar 

  43. Huang ME, Ye YI, Chen SR (1988) Use of all-trans-retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    CAS  PubMed  Google Scholar 

  44. Chomienne C, Ballerini P, Balitrand N et al (1989) Retinoic acid therapy for promyelocytic leukaemia. Lancet 334(8665):746–747

    Article  Google Scholar 

  45. Simeone AM, Tari AM (2004) How retinoids regulate breast cancer cell proliferation and apoptosis. Cell Mol Life Sci 61:1475–1484

    Article  CAS  PubMed  Google Scholar 

  46. Moise AR, Noy N, Palczewski K, Blaner WS (2007) Delivery of retinoid-based therapies to target tissues. Biochemistry 46:4449–4458

    Article  CAS  PubMed  Google Scholar 

  47. McCully KS (2015) The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia. Ann Clin Lab Sci 45:222–225

    CAS  PubMed  Google Scholar 

  48. Beard J (1911) The enzymatic treatment of cancer and its scientific basis. Chatto & Windus, London, 1911, republished by New Spring Press, New York, 2010 with a foreword by Nicholas Gonzalez

    Google Scholar 

  49. Acevedo HF, Tong JY, Hartsock RJ (1995) Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer 76:1467–1475

    Article  CAS  PubMed  Google Scholar 

  50. Novak JF, Trynka F (2005) Proenzyme therapy of cancer. Anticancer Res 25:1157–1178

    CAS  PubMed  Google Scholar 

  51. Gonzalez N, Isaacs L (2009) The trophoblast and the origins of cancer. New Spring Press, New York

    Google Scholar 

  52. Perla-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  CAS  PubMed  Google Scholar 

  53. Gaull G, Sturman JA, Raiha NCR (1972) Development of mammalian sulfur metabolism: absence of cystathionase in fetal tissues. Pediatr Res 6:538–547

    Article  CAS  PubMed  Google Scholar 

  54. McCully KS (2016) Homocysteine, thioretinaco ozonide, oxidative phosphorylation, biosynthesis of phosphoadenosine phosphosulfate and the pathogenesis of atherosclerosis. Ann Clin Lab Sci 46:701–704

    CAS  PubMed  Google Scholar 

  55. Schneider WC, Potter VR (1943) Biocatalysts in cancer tissue. III. Succinic dehydrogenase and cytochrome oxidase. Cancer Res 3:353–357

    CAS  Google Scholar 

  56. Krebs ET Jr (1962) The nitrilosides in the prevention and control of cancer. McNaughton Foundation, Los Angeles, pp 1–21

    Google Scholar 

  57. Sen U, Basu P, Abe OA et al (2009) Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol 297:F410–F419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olson KR, Whitfield NL (2010) Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 12:1219–1234

    Article  CAS  PubMed  Google Scholar 

  59. Chang L, Geng B, Yu F et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  CAS  PubMed  Google Scholar 

  60. Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benavides GA, Squadrito GL, Mills RW et al (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977–17982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeh YY, Yeh SM (2006) Homocysteine-lowering action is another potential cardiovascular protective factor of aged garlic extract. J Nutr 136:745S–749S

    Article  CAS  PubMed  Google Scholar 

  64. Chen LY, Chen Q, Zhu XJ et al (2016) Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism. Int Immunopharmacol 36:23–30

    Article  PubMed  CAS  Google Scholar 

  65. Tsai CY, Wang CC, Lai TY et al (2013) Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J Cardiol 168:1286–1297

    Article  PubMed  Google Scholar 

  66. Tsai CY, Wen SY, Shibu MA et al (2015) Diallyl trisulfide protects against high glucose-induced cardiac apoptosis by stimulating the production of cystathionine gamma-lyase-derived hydrogen sulfide. Int J Cardiol 195:300–310

    Article  PubMed  Google Scholar 

  67. Das A, Banik NL, Ray SK (2007) Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer 110:1083–1094

    Article  CAS  PubMed  Google Scholar 

  68. Na HK, Kim EH, Choi MA et al (2012) Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem Pharmacol 84:1241–1250

    Article  CAS  PubMed  Google Scholar 

  69. Chandra-Kuntal K, Lee J, Singh SV (2013) Critical role for reactive oxygen species in apoptosis induction and cell migration inhibition by diallyl trisulfide, a cancer chemopreventive component of garlic. Breast Cancer Res Treat 138:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Zhu P, Wang Y et al (2015) Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppression MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways. PLoS One 10:e1023781

    Google Scholar 

  71. Kim SH, Kaschula CH, Priedigkeit N et al (2016) Forkhead box Q1 is a novel target of breast cancer stem cell inhibition by diallyl trisulfide. J Biol Chem 291:13495–13508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang HC, Pao J, Lin SY et al (2012) Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann N Y Acad Sci 1271:44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma HB, Huang S, Yin XR et al (2014) Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. World J Gastroenterol 20:193–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Seki T, Tsuji K, Hayato Y et al (2000) Garlic and onion oils inhibit proliferation and induce differentiation of HL-60 cells [human promyelocytic leukemia cells]. Cancer Lett 160:29–35

    Article  CAS  PubMed  Google Scholar 

  75. Desmond JC, Kawabata H, Mueller-Tidow C et al (2005) The synthetic furanonapthoquinone induces growth arrest, apoptosis and differentiation in a variety of leukaemias and multiple myeloma cells. Brit J Haematol 131:520–529

    Article  CAS  Google Scholar 

  76. Gafner S, Wolfender JL, Nianga M et al (1996) Antifungal and antibacterial napthoquinones from Newbouldia laevis roots. Phytochemistry 42:1315–1320

    Article  CAS  PubMed  Google Scholar 

  77. Gormann R, Kaloga M, Li XC et al (2003) Furanonaphthoquinones, atraric acid and a benzofuran from stem barks of Newbouldia laevis. Phytochemistry 64:583–587

    Article  CAS  PubMed  Google Scholar 

  78. Peraza-Sanchez SR, Chavez D, Chai HB et al (2000) Cytotoxic constituents of the roots of Ekmanianthe longiflora. J Nat Prod 63:492–495

    Article  CAS  PubMed  Google Scholar 

  79. Itoigawa M, Ito C, Tan HTW et al (2001) Cancer chemopreventive activity of naphthoquinones and their analogs from Avicennia plants. Cancer Lett 174:135–139

    Article  CAS  PubMed  Google Scholar 

  80. Ogawa M, Koyanagi J, Sugaya A et al (2006) Cytotoxic activity toward KB cells of 2-substituted naphtho[2,3-b]furan-4,9-diones and their related compounds. Biosci Biotechnol Biochem 70:1009–1012

    Article  CAS  PubMed  Google Scholar 

  81. Williams RB, Norris A, Miller JS et al (2006) Two new cytotoxic naphthoquinones from Mendoncia cowanii from the rainforest of Madagascar. Planta Med 72:564–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Song H, Wang R, Wang S, Lin J (2005) A low-molecular weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A 102:4700–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang Z, Chiang JL, Leggett D (2014) STAT3 pathway inhibitors and cancer stem cell inhibitors. US Patent 8,877,803, 4 Nov 2014

    Google Scholar 

  84. Li Y, Rogoff HA, Keates S et al (2015) Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A 112:1839–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Jin Z, Zhou H et al (2016) Suppression of prostate cancer progression by cancer cell stemness inhibitor napabucasin. Cancer Med 5:1251–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chandra-Kuntal K, Singh SV (2010) Diallyl trisulfide inhibits activation of Signal Transducer and Activator of Transcription 3 in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 3:1473–1483

    Article  CAS  Google Scholar 

  87. Lee HJ, Lee HG, Choi KS et al (2013) Diallyl trisulfide suppresses dextran sodium sulfate-induced mouse colitis: NFκB and STAT3 as potential targets. Biochem Biophys Res Commun 437:267–273

    Article  CAS  PubMed  Google Scholar 

  88. Cortelezzi A, Fracchiolla NS, Bamonti-Catena F et al (2001) Hyperhomocysteinemia in myelodysplastic syndromes: specific association with autoimmunity and cardiovascular disease. Leuk Lymphoma 41:147–150

    Article  CAS  PubMed  Google Scholar 

  89. Giannouli S, Kanellopoulou T, Voulegarelis M (2012) Myelodysplasia and autoimmunity. Curr Opin Rheumatol 24:97–102

    Article  CAS  PubMed  Google Scholar 

  90. Fracchiolla NS, Catena FB, Novembrino C et al (2003) Possible association between reactive oxygen metabolites and karyotypic abnormalities in myelodysplastic syndromes. Haematologica 88:594–597

    PubMed  Google Scholar 

  91. Pimkova K, Chrastinova L, Suttnar J et al (2014) Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload. Oxidative Med Cell Longev 2014:416028

    Article  CAS  Google Scholar 

  92. Cortelezzi A, Cattaneo C, Sarina B et al (1999) Efficacy of N-acetylcysteine and all-trans-retinoic acid in restoring in vitro effective hemopoiesis in myelodysplastic syndromes. Leuk Res 24:129–137

    Article  Google Scholar 

  93. Nimer SD (2008) Myelodysplastic syndromes. Blood 111:4841–4851

    Article  CAS  PubMed  Google Scholar 

  94. Gurion R, Vidal L, Gafter-Gvilli A et al (2010) 5-azacytidine prolongs overall survival in patients with myelodysplastic syndrome—a systematic review and meta-analysis. Haematologica 95:303–310

    Article  CAS  PubMed  Google Scholar 

  95. “Prescribing information—Azacytidine for Infection” (2016) fda.gov United States Food and Drug Administration

  96. Jerez A, Clemente MJ, Makishima H et al (2013) STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplasia syndrome patients. Blood 122:2453–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schultz KR (2013) STAT3 mutations and persistence of autoimmunity. Blood 122:2295–2296

    Article  CAS  PubMed  Google Scholar 

  98. Mitiades P, Lamprianidou E, Vassilakopoulos TP et al (2016) The Stat 3/5 signaling biosignature in hematopoietic stem/progenitor cells predicts response and outcome in myelodysplastic syndrome patients treated with azacytidine. Clin Cancer Res 22:1958–1968

    Article  CAS  Google Scholar 

  99. Milner JD, Vogel TP, Forbes L et al (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Haapaniemi EM, Kaustio M, Rajala HLM et al (2015) Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Harris TJ, Grosso JF, Yen HR et al (2007) An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 179:4313–4317

    Article  CAS  PubMed  Google Scholar 

  102. Zhang S, Zheng M, Kibe R et al (2011) Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis. FASEB J 25:2387–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Daw S, Chatterjee R, Law A et al (2016) Analysis of hematopathology and alteration of JAK1/STAT3/STAT5 signaling axis in experimental myelodysplastic syndrome. Chem Biol Interact 260:176–185

    Article  CAS  PubMed  Google Scholar 

  104. Lee SY, Moon SJ, Kim EK et al (2017) Metformin suppresses systemic autoimmunity in Roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol 198:2661–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McCully KS (2015) Compositions and method for utilization of thioretinamide in therapy of diseases of aging. US Patent No. 9,216,209. 22 Dec 2015

    Google Scholar 

  106. McCully KS (2017) Thioretinamide compositions for the apoptosis of malignant cells while preventing the apoptosis of normal cells and related methods. US Continuing Patent Application S.N. 15/475,103, 30 Mar 2017

    Google Scholar 

  107. Kazimir M, Wilson R (2000) Method for synthesis of N-homocysteine thiolactonyl retinamide. US Patent 6,054,595, 25 Apr 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilmer S. McCully .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McCully, K.S. (2019). Homocysteine, Thioretinaco Ozonide, and Oxidative Phosphorylation in Cancer and Aging: A Proposed Clinical Trial Protocol. In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics