Skip to main content

Generation of Rabbit Models by Gene Editing Nucleases

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

Due to the lack of germline transmitting pluripotent stem cells (PSCs) cell lines and the extreme difficulty of somatic cell nuclear transfer (SCNT) in rabbit, the gene targeting technology in rabbit was lagging far behind those in rodents and in farm animals. As a result, the development and application of genetically engineered rabbit model are much limited. With the advent of gene editing nucleases, including ZFN, TALEN, and CRISPR/Cas9, it is now possible to produce gene targeting (i.e., knockout, knockin) rabbits with high success rates. In this chapter, we describe a comprehensive, step-by-step protocol for rabbit genome editing based on gene editing nucleases with specific emphasis of CRISPR/Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan J, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther 99(3):261–282

    Article  CAS  Google Scholar 

  2. Peng X (2012) Transgenic rabbit models for studying human cardiovascular diseases. Comp Med 62(6):472–479

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Peng X, Knouse JA, Hernon KM (2015) Rabbit models for studying human infectious diseases. Comp Med 65(6):499–507

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE (2015) Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 146:104–119. https://doi.org/10.1016/j.pharmthera.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Li WH, Gouy M, Sharp PM, O’HUigin C, Yang YW (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci U S A 87(17):6703–6707

    Article  CAS  Google Scholar 

  6. Graur D, Duret L, Gouy M (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379(6563):333–335. https://doi.org/10.1038/379333a0

    Article  CAS  PubMed  Google Scholar 

  7. Miller MJ, Chen NK, Li L, Tom B, Weiss C, Disterhoft JF, Wyrwicz AM (2003) fMRI of the conscious rabbit during unilateral classical eyeblink conditioning reveals bilateral cerebellar activation. J Neurosci 23(37):11753–11758

    Article  CAS  Google Scholar 

  8. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683

    Article  CAS  Google Scholar 

  9. Fan J, Ji ZS, Huang Y, de Silva H, Sanan D, Mahley RW, Innerarity TL, Taylor JM (1998) Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J Clin Invest 101(10):2151–2164. https://doi.org/10.1172/jci1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan J, Wang J, Bensadoun A, Lauer SJ, Dang Q, Mahley RW, Taylor JM (1994) Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci U S A 91(18):8724–8728

    Article  CAS  Google Scholar 

  11. Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S, Taylor JM, Innerarity TL (1995) Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci U S A 92(18):8483–8487

    Article  CAS  Google Scholar 

  12. Huang Y, Schwendner SW, Rall SC Jr, Sanan DA, Mahley RW (1997) Apolipoprotein E2 transgenic rabbits. Modulation of the type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis. J Biol Chem 272(36):22685–22694

    Article  CAS  Google Scholar 

  13. Hoeg JM, Santamarina-Fojo S, Berard AM, Cornhill JF, Herderick EE, Feldman SH, Haudenschild CC, Vaisman BL, Hoyt RF Jr, Demosky SJ Jr, Kauffman RD, Hazel CM, Marcovina SM, Brewer HB Jr (1996) Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci U S A 93(21):11448–11453

    Article  CAS  Google Scholar 

  14. Knight KL, Spieker-Polet H, Kazdin DS, Oi VT (1988) Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer. Proc Natl Acad Sci U S A 85(9):3130–3134

    Article  CAS  Google Scholar 

  15. Peng X, Olson RO, Christian CB, Lang CM, Kreider JW (1993) Papillomas and carcinomas in transgenic rabbits carrying EJ-ras DNA and cottontail rabbit papillomavirus DNA. J Virol 67(3):1698–1701

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamamura Y, Kotani M, Chowdhury MI, Yamamoto N, Yamaguchi K, Karasuyama H, Katsura Y, Miyasaka M (1991) Infection of human CD4+ rabbit cells with HIV-1: the possibility of the rabbit as a model for HIV-1 infection. Int Immunol 3(11):1183–1187

    Article  CAS  Google Scholar 

  17. Snyder BW, Vitale J, Milos P, Gosselin J, Gillespie F, Ebert K, Hague BF, Kindt TJ, Wadsworth S, Leibowitz P (1995) Developmental and tissue-specific expression of human CD4 in transgenic rabbits. Mol Reprod Dev 40(4):419–428. https://doi.org/10.1002/mrd.1080400405

    Article  CAS  PubMed  Google Scholar 

  18. Dunn CS, Mehtali M, Houdebine LM, Gut JP, Kirn A, Aubertin AM (1995) Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits. J Gen Virol 76(Pt 6):1327–1336. https://doi.org/10.1099/0022-1317-76-6-1327

    Article  CAS  PubMed  Google Scholar 

  19. Massoud M, Bischoff R, Dalemans W, Pointu H, Attal J, Schultz H, Clesse D, Stinnakre MG, Pavirani A, Houdebine LM (1991) Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits. J Biotechnol 18(3):193–203

    Article  CAS  Google Scholar 

  20. McKee C, Gibson A, Dalrymple M, Emslie L, Garner I, Cottingham I (1998) Production of biologically active salmon calcitonin in the milk of transgenic rabbits. Nat Biotechnol 16(7):647–651. https://doi.org/10.1038/nbt0798-647

    Article  CAS  PubMed  Google Scholar 

  21. Prather RS, Lai L (2003) Creating genetically modified pigs by using nuclear transfer. Reprod Biol Endocrinol 1(1):82

    Article  Google Scholar 

  22. Ramsoondar JJ, Machaty Z, Costa C, Williams BL, Fodor WL, Bondioli KR (2003) Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 69(2):437–445

    Article  CAS  Google Scholar 

  23. Lai L, Park KW, Cheong HT, Kuhholzer B, Samuel M, Bonk A, Im GS, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS (2002) Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62(3):300–306

    Article  CAS  Google Scholar 

  24. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278(5346):2130–2133

    Article  CAS  Google Scholar 

  25. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405(6790):1066–1069

    Article  CAS  Google Scholar 

  26. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280(5367):1256–1258

    Article  CAS  Google Scholar 

  27. Cole RJ, Edwards RG, Paul J (1966) Cytodifferentiation and embryogenesis in cell colonies and tissue cultures derived from ova and blastocysts of the rabbit. Dev Biol 13(3):385–407

    Article  CAS  Google Scholar 

  28. Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20(4):366–369. https://doi.org/10.1038/nbt0402-366

    Article  CAS  PubMed  Google Scholar 

  29. Du F, Xu J, Zhang J, Gao S, Carter MG, He C, Sung LY, Chaubal S, Fissore RA, Tian XC, Yang X, Chen YE (2009) Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer. Cloning Stem Cells 11(1):131–140. https://doi.org/10.1089/clo.2008.0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conklin BR (2013) Sculpting genomes with a hammer and chisel. Nat Methods 10(9):839–840. https://doi.org/10.1038/nmeth.2608

    Article  CAS  PubMed  Google Scholar 

  32. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67. https://doi.org/10.1038/nbt.1731

    Article  CAS  PubMed  Google Scholar 

  33. Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J, Chen YE (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol 6(1):97–99. https://doi.org/10.1093/jmcb/mjt047

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsu Patrick D, Lander Eric S, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shuji Kitajima EL, Fan J (2009) Rabbit transgenesis. Rabbit biotechnology: rabbit genomics, transgenesis, cloning and models. Springer, Dordrecht, Heidelberg, London, New York

    Google Scholar 

  37. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7. https://doi.org/10.1038/ncomms10548

    Article  CAS  Google Scholar 

  38. Song J, Yang D, Ruan J, Zhang J, Chen YE, Xu J (2017) Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting. Sci Rep 7(1):12202. https://doi.org/10.1038/s41598-017-12201-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lebas F, Coudert P, de Rochambeau H, Thébault RG (1997) The rabbit: husbandry, health and production (new revised version). FAO animal production and health series, no. 21. Food and Agriculture Organization of the United Nations

    Google Scholar 

  40. Najjar A, Ben Aicha E, Ben Mrad M (2013) Receptivity of the rabbit doe: which methods that could be predictive for receptivity. Experiment 12(3):786–790

    Google Scholar 

  41. Krempels D (2011) Pre- and post-operative care of rabbits. Newsl Buckeye House Rabbit Soc 15(2):1–4

    Google Scholar 

  42. Bateman L, Ludders JW, Gleed RD, Erb HN (2005) Comparison between facemask and laryngeal mask airway in rabbits during isoflurane anesthesia. Vet Anaesth Analg 32(5):280–288. https://doi.org/10.1111/j.1467-2995.2005.00169.x

    Article  CAS  PubMed  Google Scholar 

  43. Murakami H, Imai H (1996) Successful implantation of in vitro cultured rabbit embryos after uterine transfer: a role for mucin. Mol Reprod Dev 43(2):167–170. https://doi.org/10.1002/(sici)1098-2795(199602)43:2<167::aid-mrd5>3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  44. Moore NW, Adams CE, Rowson LE (1968) Developmental potential of single blastomeres of the rabbit egg. J Reprod Fertil 17(3):527–531

    Article  CAS  Google Scholar 

  45. Adams CE (1970) Maintenance of pregnancy relative to the presence of few embryos in the rabbit. J Endocrinol 48(2):243–249

    Article  CAS  Google Scholar 

  46. Yang D, Zhang J, Xu J, Zhu T, Fan Y, Fan J, Chen YE (2013) Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. J Vis Exp 81:50957. https://doi.org/10.3791/50957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Eugene Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, D., Xu, J., Chen, Y.E. (2019). Generation of Rabbit Models by Gene Editing Nucleases. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics