Skip to main content

An Adult Zebrafish Model of Fibrodysplasia Ossificans Progressiva

  • Protocol
  • First Online:
Bone Morphogenetic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare human skeletal disease caused by constitutively activating mutations in the gene ACVR1, which encodes a type I BMP/TGFβ family member receptor. FOP is characterized by progressive heterotopic ossification (HO) of fibrous tissues, including skeletal muscle, tendons, and ligaments, as well as malformation of the big toes, vertebral fusions, and osteochondromas. Surgical interventions in patients often result in enhanced HO, which can exacerbate rather than improve diagnostic outcomes. As a result of these difficulties, a variety of animal models are needed to study human FOP. Here we describe the methods for creating and characterizing zebrafish conditionally expressing Acvr1lQ204D, the first adult zebrafish model for FOP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343. https://doi.org/10.1016/j.devcel.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  2. Wu M, Chen G, Li Y-P (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shore EM, Xu M, Feldman GJ et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525–527. https://doi.org/10.1038/ng1783

    Article  CAS  PubMed  Google Scholar 

  4. Kaplan FS, Xu M, Seemann P et al (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30:379–390. https://doi.org/10.1002/humu.20868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pignolo RJ, Shore EM, Kaplan FS (2011) Fibrodysplasia ossificans progressiva: clinical and genetic aspects. Orphanet J Rare Dis 6:80. https://doi.org/10.1186/1750-1172-6-80

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chakkalakal SA, Zhang D, Culbert AL et al (2012) An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res 27:1746–1756. https://doi.org/10.1002/jbmr.1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bagarova J, Vonner AJ, Armstrong KA et al (2013) Constitutively active ALK2 receptor mutants require type II receptor cooperation. Mol Cell Biol 33:2413–2424. https://doi.org/10.1128/MCB.01595-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hatsell SJ, Idone V, Wolken DMA et al (2015) ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 7:303ra137. https://doi.org/10.1126/scitranslmed.aac4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Twombly V, Bangi E, Le V et al (2009) Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 183:563–579. 1SI–8SI. https://doi.org/10.1534/genetics.109.105585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Le VQ, Wharton KA (2012) Hyperactive BMP signaling induced by ALK2(R206H) requires type II receptor function in a Drosophila model for classic fibrodysplasia ossificans progressiva. Dev Dyn 241:200–214. https://doi.org/10.1002/dvdy.22779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu PB, Deng DY, Lai CS et al (2008) BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 14:1363–1369. https://doi.org/10.1038/nm.1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haupt J, Deichsel A, Stange K et al (2014) ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant. Hum Mol Genet 23(20):5364–5377. https://doi.org/10.1093/hmg/ddu255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lees-Shepard JB, Yamamoto M, Biswas AA et al (2018) Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat Commun 9:471. https://doi.org/10.1038/s41467-018-02872-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. LaBonty M, Yelick PC (2018) Animal models of fibrodysplasia ossificans progressiva. Dev Dyn 247:279–288. https://doi.org/10.1002/dvdy.24606

    Article  PubMed  Google Scholar 

  15. Yelick PC, Abduljabbar TS, Stashenko P (1998) zALK-8, a novel type I serine/threonine kinase receptor, is expressed throughout early zebrafish development. Dev Dyn 211:352–361. https://doi.org/10.1002/(SICI)1097-0177(199804)211:4<352::AID-AJA6>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  16. Payne TL, Postlethwait JH, Yelick PC (2001) Functional characterization and genetic mapping of alk8. Mech Dev 100:275–289

    Article  CAS  Google Scholar 

  17. Mintzer KA, Lee MA, Runke G et al (2001) Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128:859–869

    CAS  PubMed  Google Scholar 

  18. Bauer H, Lele Z, Rauch GJ et al (2001) The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128:849–858

    CAS  PubMed  Google Scholar 

  19. Alexander C, Zuniga E, Blitz IL et al (2011) Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 138:5135–5146. https://doi.org/10.1242/dev.067801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. LaBonty M, Pray N, Yelick PC (2017) A zebrafish model of human fibrodysplasia ossificans progressiva. Zebrafish 14:293–304. https://doi.org/10.1089/zeb.2016.1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duszynski RJ, Topczewski J, LeClair EE (2011) Simple, economical heat-shock devices for zebrafish housing racks. Zebrafish 8:211–219. https://doi.org/10.1089/zeb.2011.0693

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hall BK (1986) The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick. J Embryol Exp Morphol 93:133–152

    CAS  PubMed  Google Scholar 

  23. Webb JF, Shirey JE (2003) Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev Dyn 228:370–385. https://doi.org/10.1002/dvdy.10385

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NIDCR R01DE018043 (PCY), R21AR065761 (PCY), and NSF GRFP NS9344 (ML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela C. Yelick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

LaBonty, M., Yelick, P.C. (2019). An Adult Zebrafish Model of Fibrodysplasia Ossificans Progressiva. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics