Skip to main content

Common Cell Lines Used to Study Bone Morphogenetic Proteins (BMPs)

  • Protocol
  • First Online:
Bone Morphogenetic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

  • 982 Accesses

Abstract

Many research methods exist to elucidate the functions of BMPs during osteogenesis. This chapter briefly reviews common immortalized mesenchymal cell types used to measure the efficacy of osteogenic factors like BMP-2. Detailed information regarding media and culture conditions are provided. Parameters relevant to experimental reproducibility and cell line authentication are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urist M (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  Google Scholar 

  2. Wozney JM et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  Google Scholar 

  3. Katagiri T et al (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172(1):295–299

    Article  CAS  Google Scholar 

  4. Katagiri T et al (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127(6 Pt 1):1755–1766

    Article  CAS  Google Scholar 

  5. Wang EA et al (1993) Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9(1):57–71

    Article  CAS  Google Scholar 

  6. Denker AE et al (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64(2):67–76

    Article  CAS  Google Scholar 

  7. Sottile V, Seuwen K (2000) Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Lett 475(3):201–204

    Article  CAS  Google Scholar 

  8. Cheng SL et al (2003) MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 278(46):45969–45977

    Article  CAS  Google Scholar 

  9. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896

    Article  CAS  Google Scholar 

  10. Sudo H et al (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96(1):191–198

    Article  CAS  Google Scholar 

  11. Quarles LD et al (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7(6):683–692

    Article  CAS  Google Scholar 

  12. Wang D et al (1999) Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14(6):893–903

    Article  CAS  Google Scholar 

  13. Li G et al (2005) Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation. J Bone Miner Res 20(9):1611–1623

    Article  CAS  Google Scholar 

  14. Atsumi T et al (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30(2):109–116

    Article  CAS  Google Scholar 

  15. Lorsch JR, Collins FS, Lippincott-Schwartz J (2014) Cell biology. Fixing problems with cell lines. Science 346(6216):1452–1453

    Article  CAS  Google Scholar 

  16. Rogers MB, Shah TA, Shaikh NN (2015) Turning bone morphogenetic protein 2 (BMP2) on and off in mesenchymal cells. J Cell Biochem 116(10):2127–2138

    Article  CAS  Google Scholar 

  17. Jiang S et al (2007) Mycoplasma infection transforms normal lung cells and induces bone morphogenetic protein 2 expression by post-transcriptional mechanisms. J Cell Biochem 104(2):580–594

    Article  Google Scholar 

  18. Baker M (2016) Reproducibility: respect your cells! Nature 537(7620):433–435

    Article  CAS  Google Scholar 

  19. Miller CJ et al (2003) Mycoplasma infection significantly alters microarray gene expression profiles. BioTechniques 35(4):812–814

    Article  CAS  Google Scholar 

  20. Olarerin-George AO, Hogenesch JB (2015) Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI’s RNA-seq archive. Nucleic Acids Res 43(5):2535–2542

    Article  CAS  Google Scholar 

  21. Uphoff CC, Drexler HG (2014) Detection of mycoplasma contamination in cell cultures. Curr Protoc Mol Biol 106:28.4.1–28.4.14

    Article  Google Scholar 

  22. Zhao B et al (2006) Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem 281(32):23246–23253

    Article  CAS  Google Scholar 

  23. Kim HY et al (2016) Development of porous beads to provide regulated BMP-2 stimulation for varying durations: in vitro and in vivo studies for bone regeneration. Biomacromolecules 17(5):1633–1642

    Article  CAS  Google Scholar 

  24. Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842–1853

    Article  CAS  Google Scholar 

  25. Date T, Doiguchi Y, Nobuta M, Shindo H (2004) Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci 9:503–508

    Article  CAS  Google Scholar 

  26. Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A 101:9607–9611

    Article  CAS  Google Scholar 

  27. Hiraki Y, Inoue H, Shigeno C, Sanma Y, Bentz H, Rosen DM et al (1991) Bone morphogenetic proteins (BMP-2 and BMP-3) promote growth and expression of the differentiated phenotype of rabbit chondrocytes and osteoblastic MC3T3-E1 cells in vitro. J Bone Miner Res 6:1373–1385

    Article  CAS  Google Scholar 

  28. Luppen CA, Smith E, Spevak L, Boskey AL, Frenkel B (2003) Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures. J Bone Miner Res 18:1186–1197

    Article  CAS  Google Scholar 

  29. Lawson MA, Purslow PP (2000) Differentiation of myoblasts in serum-free media: effects of modified media are cell linespecific. Cells Tissues Organs 167:130–137

    Article  CAS  Google Scholar 

  30. Almodovar J, Guillot R, Monge C, Vollaire J, Selimovic S, Coll JL et al (2014) Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials 35:3975–3985

    Article  CAS  Google Scholar 

  31. Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133:457–468

    Article  CAS  Google Scholar 

  32. Yao Y, Zhai Z, Wang Y (2014) Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells. Biomed Res Int 2014:569241

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Ann Cottrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cottrell, J.A., Burgess, D., Michaels, S., Rogers, M.B. (2019). Common Cell Lines Used to Study Bone Morphogenetic Proteins (BMPs). In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics