Skip to main content

LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence

  • Protocol
  • First Online:
Calpain

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1915))

Abstract

Calpains are a family of Ca2+-dependent cysteine proteases involved in many important biological processes, where they selectively cleave relevant substrates at specific cleavage sites to regulate the function of the substrate proteins. Presently, our knowledge about the function of calpains and the mechanism of substrate cleavage is still limited due to the fact that the experimental determination and validation on calpain bindings are usually laborious and expensive. This chapter describes LabCaS, an algorithm that is designed for predicting the calpain substrate cleavage sites from amino acid sequences. LabCaS is built on a conditional random field (CRF) statistic model, which trains the cleavage site prediction on multiple features of amino acid residue preference, solvent accessibility information, pair-wise alignment similarity score, secondary structure propensity, and physical-chemistry properties. Large-scale benchmark tests have shown that LabCaS can achieve a reliable recognition of the cleavage sites for most calpain proteins with an average AUC score of 0.862. Due to the fast speed and convenience of use, the protocol should find its usefulness in large-scale calpain-based function annotations of the newly sequenced proteins. The online web server of LabCaS is freely available at http://www.csbio.sjtu.edu.cn/bioinf/LabCaS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell RL, Davies PL (2012) Structure-function relationships in calpains. Biochem J 447:335–351

    Article  CAS  Google Scholar 

  2. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    Article  CAS  Google Scholar 

  3. Storr SJ, Carragher NO, Frame MC et al (2011) The calpain system and cancer. Nat Rev Cancer 11:364–374

    Article  CAS  Google Scholar 

  4. Bertipaglia I, Carafoli E (2007) Calpains and human disease. Subcell Biochem 45:29–53

    Article  CAS  Google Scholar 

  5. Croall DE, Ersfeld K (2007) The calpains: modular designs and functional diversity. Genome Biol 8:218

    Article  Google Scholar 

  6. Friedrich P, Bozoky Z (2005) Digestive versus regulatory proteases: on calpain action in vivo. Biol Chem 386:609–612

    Article  CAS  Google Scholar 

  7. Rawlings ND, Barrett AJ, Finn R (2016) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44:D343–D350

    Article  CAS  Google Scholar 

  8. Duverle D, Takigawa I, Ono Y et al (2010) CaMPDB: a resource for calpain and modulatory proteolysis. Genome Inform 22:202–213

    PubMed  Google Scholar 

  9. Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305

    Article  CAS  Google Scholar 

  10. Igarashi Y, Eroshkin A, Gramatikova S et al (2007) CutDB: a proteolytic event database. Nucleic Acids Res 35:D546–D549

    Article  CAS  Google Scholar 

  11. Igarashi Y, Heureux E, Doctor KS et al (2009) PMAP: databases for analyzing proteolytic events and pathways. Nucleic Acids Res 37:D611–D618

    Article  CAS  Google Scholar 

  12. Tompa P, Buzder-Lantos P, Tantos A et al (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279:20775–20785

    Article  CAS  Google Scholar 

  13. Boyd SE, Pike RN, Rudy GB et al (2005) PoPS: a computational tool for modeling and predicting protease specificity. J Bioinforma Comput Biol 3:551–585

    Article  CAS  Google Scholar 

  14. Verspurten J, Gevaert K, Declercq W et al (2009) SitePredicting the cleavage of proteinase substrates. Trends Biochem Sci 34:319–323

    Article  CAS  Google Scholar 

  15. Liu Z, Cao J, Gao X et al (2011) GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. PLoS One 6:e19001

    Article  CAS  Google Scholar 

  16. Duverle DA, Ono Y, Sorimachi H et al (2011) Calpain cleavage prediction using multiple kernel learning. PLoS One 6(5):e19035

    Article  CAS  Google Scholar 

  17. Fan YX, Zhang Y, Shen HB (2013) LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins 81:622–634

    Article  CAS  Google Scholar 

  18. Shinkai-Ouchi F, Koyama S, Ono Y et al (2016) Predictions of cleavability of calpain proteolysis by quantitative structure-activity relationship analysis using newly determined cleavage sites and catalytic efficiencies of an oligopeptide array. Mol Cell Proteomics 15:1262–1280

    Article  CAS  Google Scholar 

  19. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  Google Scholar 

  20. Xu D, Zhang J, Roy A et al (2011) Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins 79 Suppl 10:147–160

    Article  Google Scholar 

  21. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  22. Granseth E, Von Heijne G, Elofsson A (2005) A study of the membrane-water interface region of membrane proteins. J Mol Biol 346:377–385

    Article  CAS  Google Scholar 

  23. Mak MW, Wang W, Kung SY (2009) Fusion of conditional random field and signalp for protein cleavage site prediction. In: In acoustics, speech and signal processing. Taipei, pp 716–721

    Google Scholar 

  24. Fan YX, Song J, Shen HB et al (2011) PredCSF: an integrated feature-based approach for predicting conotoxin superfamily. Protein Pept Lett 18:261–267

    Article  CAS  Google Scholar 

  25. Hammersley J, Clifford P (1971) Markov field on finite graphs and lattices. Unpublished manuscript

    Google Scholar 

Download references

Acknowledgment

We are grateful to Mr. Wallace Chan and Dr. S M Golam Mortuza for proofreading the manuscript. This work was supported in part by the National Natural Science Foundation of China (No. 61462018, 61762026, 61671288, 91530321, 61725302, and 61603161), Guangxi Natural Science Foundation (No. 2017GXNSFAA198278), Guangxi Key Laboratory of Trusted Software (No. kx201403), Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Images and Graphics (No. GIIP201502), Science and Technology Commission of Shanghai Municipality (No. 16JC1404300, 17JC1403500), and the National Science Foundation (ABI 1564756).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Hong-Bin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, YX., Pan, X., Zhang, Y., Shen, HB. (2019). LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence. In: Messer, J. (eds) Calpain. Methods in Molecular Biology, vol 1915. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8988-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8988-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8987-4

  • Online ISBN: 978-1-4939-8988-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics