Skip to main content

Modified Bacteriophage Tail Fiber Proteins for Labeling, Immobilization, Capture, and Detection of Bacteria

  • Protocol
  • First Online:
Foodborne Bacterial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1918))

Abstract

A critical component of bacterial detection assays is choosing a suitable affinity molecule that retains sensitivity and specificity for the target pathogen over a wide range of in situ applications. Bacteriophages (phages) are bacterial viruses that bind and infect their host cells with unmatched specificity. Phage host range is often determined by their long tail fibers (LTFs) that mediate adsorption of the virus particle to potential bacterial host cells, by binding to specific cell surface receptors. The inherent specificity of the LTFs for distinct bacterial species makes them ideal candidates for development into recombinant affinity molecules. In this chapter, we describe the development of the Salmonella phage S16 LTF (S16 LTF) into an affinity molecule as part of a novel assay to detect Salmonella cells. The enzyme-linked long tail fiber assay (ELLTA) involves two steps: (1) Immobilization and separation of Salmonella cells using S16 LTF-coated paramagnetic beads (LTF-MBs), and (2) Labeling of bead-captured Salmonella using horseradish peroxidase-conjugated S16 LTF (HRP-LTF). Rapid HRP-mediated conversion of a chromogenic substrate provides visual confirmation for the presence of Salmonella. Overall, the ELLTA assay requires as little as 2 h to detect as few as 102 cfu/ml Salmonella cells from liquid culture. The absorbance of the enzyme-generated color substrate is largely proportional to the present bacterial concentrations between 102 and 107 cfu/ml, providing semiquantitative determination of Salmonella cell counts. The methodology described in this chapter can be adapted for other phage receptor-binding proteins, to develop ELLTAs for the detection of other relevant bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell RL, Jarvis KG, Ottesen AR et al (2016) Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microb Biotechnol 9:279–292

    PubMed  PubMed Central  Google Scholar 

  2. Cudjoe KS, Krona R, Olsen E (1994) IMS: a new selective enrichment technique for detection of Salmonella in foods. Int J Food Microbiol 23:159–165

    CAS  PubMed  Google Scholar 

  3. de Cássia dos Santos da Conceição R, Moreira ÂN, Ramos RJ et al (2008) Detection of Salmonella sp in chicken cuts using immunomagnetic separation. Braz J Microbiol 39:173–177

    PubMed  PubMed Central  Google Scholar 

  4. Mansfield LP, Forsythe SJ (2000) The detection of Salmonella using a combined immunomagnetic separation and ELISA end-detection procedure. Lett Appl Microbiol 31:279–283

    CAS  PubMed  Google Scholar 

  5. Muldoon MT, Teaney G, Jingkun LI et al (2007) Bacteriophage-based enrichment coupled to Immunochromatographic strip–based detection for the determination of Salmonella in meat and poultry. J Food Prot 70:2235–2242

    PubMed  Google Scholar 

  6. Nilsson AS (2014) Phage therapy—constraints and possibilities. Ups J Med Sci 119:192–198

    PubMed  PubMed Central  Google Scholar 

  7. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):00954–00917

    Google Scholar 

  8. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 13:1763–1786

    CAS  Google Scholar 

  9. Schmelcher M, Loessner MJ (2014) Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4:e28137

    PubMed  PubMed Central  Google Scholar 

  10. Zinno P, Devirgiliis C, Ercolini D et al (2014) Bacteriophage P22 to challenge Salmonella in foods. Int J Food Microbiol 191:69–74

    CAS  PubMed  Google Scholar 

  11. Guenther S, Huwyler D, Richard S et al (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    CAS  PubMed  Google Scholar 

  12. Guenther S, Herzig O, Fieseler L et al (2012) Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154:66–72

    PubMed  Google Scholar 

  13. Kittler S, Fischer S, Abdulmawjood A et al (2013) Effect of bacteriophage application on campylobacter jejuni loads in commercial broiler flocks. Appl Environ Microbiol 79:7525–7533

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Borie C, Albala I, Sánchez P et al (2008) Bacteriophage treatment reduces Salmonella colonization of infected chickens. Avian Dis 52:64–67

    CAS  PubMed  Google Scholar 

  15. Kim JS, Hosseindoust A, Lee SH et al (2017) Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal 11:45–53

    PubMed  Google Scholar 

  16. Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53:1355–1362

    PubMed  Google Scholar 

  17. Klumpp J, Loessner MJ (2013) Listeria phages. Bacteriophage 3:e26861

    PubMed  PubMed Central  Google Scholar 

  18. Balasubramanian S, Sorokulova IB, Vodyanoy VJ et al (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study. Biosens Bioelectron 22:948–955

    CAS  PubMed  Google Scholar 

  19. Lakshmanan RS, Guntupalli R, Hu J et al (2007) Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. J Microbiol Methods 71:55–60

    CAS  PubMed  Google Scholar 

  20. Lakshmanan RS, Guntupalli R, Hu J et al (2007) Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sensors Actuators B Chem 126:544–550

    CAS  Google Scholar 

  21. Laube T, Cortés P, Llagostera M et al (2013) Phagomagnetic immunoassay for the rapid detection of Salmonella. Appl Microbiol Biotechnol 98:1795–1805

    PubMed  Google Scholar 

  22. Ackermann H-W (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    CAS  PubMed  Google Scholar 

  23. Fokine A, Rossmann MG (2014) Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 4:e28281

    PubMed  PubMed Central  Google Scholar 

  24. Leiman PG, Arisaka F, van RMJ et al (2010) Morphogenesis of the T4 tail and tail fibers. Virol J 7:355

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Spinelli S, Campanacci V, Blangy S et al (2006) Modular structure of THE receptor binding proteins of Lactococcus lactis Phages THE RBP STRUCTURE OF THE TEMPERATE PHAGE TP901-1. J Biol Chem 281:14256–14262

    CAS  PubMed  Google Scholar 

  26. Taylor NMI, Prokhorov NS, Guerrero-Ferreira RC et al (2016) Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533:346–352

    CAS  PubMed  Google Scholar 

  27. Trojet SN, Caumont-Sarcos A, Perrody E et al (2011) The gp38 Adhesins of the T4 superfamily: a complex modular determinant of the Phage’s host specificity. Genome Biol Evol 3:674–686

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartual SG, Garcia-Doval C, Alonso J et al (2010) Two-chaperone assisted soluble expression and purification of the bacteriophage T4 long tail fibre protein gp37. Protein Expr Purif 70:116–121

    PubMed  Google Scholar 

  29. Marti R, Zurfluh K, Hagens S et al (2013) Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol Microbiol 87:818–834

    CAS  PubMed  Google Scholar 

  30. Singh A, Arutyunov D, McDermott MT et al (2011) Specific detection of campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136:4780–4786

    CAS  PubMed  Google Scholar 

  31. Denyes JM, Dunne M, Steiner S et al (2017) Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Appl Environ Microbiol 83(12):e00277–e00217

    PubMed  PubMed Central  Google Scholar 

  32. Schmidt A, Rabsch W, Broeker NK et al (2016) Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens. BMC Microbiol 16:207

    PubMed  PubMed Central  Google Scholar 

  33. Waseh S, Hanifi-Moghaddam P, Coleman R et al (2010) Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One 5:e13904

    PubMed  PubMed Central  Google Scholar 

  34. Singh A, Arya SK, Glass N et al (2010) Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens Bioelectron 26:131–138

    CAS  PubMed  Google Scholar 

  35. Javed MA, Poshtiban S, Arutyunov D et al (2013) Bacteriophage receptor binding protein based assays for the simultaneous detection of campylobacter jejuni and campylobacter coli. PLoS One 8:e69770

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chua JE, Manning PA, Morona R (1999) The Shigella flexneri bacteriophage Sf6 tailspike protein (TSP)/endorhamnosidase is related to the bacteriophage P22 TSP and has a motif common to exo- and endoglycanases, and C-5 epimerases. Microbiology 145(7):1649–1659

    CAS  PubMed  Google Scholar 

  37. Steinbacher S, Baxa U, Miller S et al (1996) Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A 93:10584–10588

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh A, Arutyunov D, Szymanski CM et al (2012) Bacteriophage based probes for pathogen detection. Analyst 137:3405–3421

    CAS  PubMed  Google Scholar 

  39. Tétart F, Desplats C, HM K (1998) Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity1. J Mol Biol 282:543–556

    PubMed  Google Scholar 

  40. Riede I, Drexler K, Schwarz H et al (1987) T-even-type bacteriophages use an adhesin for recognition of cellular receptors. J Mol Biol 194:23–30

    CAS  PubMed  Google Scholar 

  41. Bartual SG, Otero JM, Garcia-Doval C et al (2010) Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci U S A 107:20287–20292

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Henning U, Jann K (1979) Two-component nature of bacteriophage T4 receptor activity in Escherichia coli K-12. J Bacteriol 137:664–666

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu S, Yu F, Liu L et al (2016) Which one of the two common reporter systems is more suitable for chemiluminescent enzyme immunoassay: alkaline phosphatase or horseradish peroxidase? Luminescence 31:888–892

    CAS  PubMed  Google Scholar 

  44. Marusich EI, Kurochkina LP, VV M (1998) Chaperones in bacteriophage T4 assembly. Biochemistry (Mosc) 63:399–406

    CAS  Google Scholar 

  45. Matsui T, Griniuviené B, Goldberg E et al (1997) Isolation and characterization of a molecular chaperone, gp57A, of bacteriophage T4. J Bacteriol 179:1846–1851

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jenna M. Denyes for her significant contribution toward the development of the ELLTA methodology and for performing the LTF-MB pulldown assays and preliminary HRP-LTF detection tests. We are also grateful for the continuous support and ideas received from Jochen Klumpp. We thank Roger Stephan and Herbert Hächler (University of Zurich, Zurich, Switzerland), and Herbert Schmidt and Agnes Weiss (Hohenheim University, Germany) for valuable discussions regarding Salmonella detection, and finally Stefan Miller (Regensburg, Germany) for advice regarding the production and use of recombinant phage proteins. The project was funded by the AiF/FEI, Bundesministerium für Wirtschaft und Technologie, Berlin, Germany (Grant number 16756 N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Loessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunne, M., Loessner, M.J. (2019). Modified Bacteriophage Tail Fiber Proteins for Labeling, Immobilization, Capture, and Detection of Bacteria. In: Bridier, A. (eds) Foodborne Bacterial Pathogens. Methods in Molecular Biology, vol 1918. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9000-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9000-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8999-7

  • Online ISBN: 978-1-4939-9000-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics