Skip to main content

In Vitro Caries Models for the Assessment of Novel Restorative Materials

  • Protocol
  • First Online:
Odontogenesis

Abstract

Due to the high failure rates of traditional dental restorations, there is an ongoing effort to develop modified and new restorative biomaterials in dentistry. Being the most commonly used restorative material, most of these efforts primarily aim to improve dental composite. Generally, the main objective of such modifications is to enhance the restorative physical and antimicrobial properties in order to limit micro-leakage and inhibit bacterial biofilm cultivation. Herein, we describe the process of designing a simple in vitro model to assess the physical and antimicrobial properties of novel restorative materials in addition to evaluating their effect on the fragile balance between enamel de- and remineralization.

Basma Sulaiman Ghandourah and Anna Lefkelidou contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burke FJ, Cheung SW, Mjör IA, Wilson NH (1999) Reasons for the placement and replacement of restorations in vocational training practices. Prim Dent Care 6:17–20

    CAS  PubMed  Google Scholar 

  2. Maupomé G, Sheiham A (1998) Criteria for restoration replacement and restoration life-span estimates in an educational environment. J Oral Rehabil 25:896–901. https://doi.org/10.1046/j.1365-2842.1998.00328.x

    Article  PubMed  Google Scholar 

  3. Elderton RJ, Osman YI (1991) Preventive versus restorative management of dental caries. J Dent Assoc S Afr 46:217–221

    CAS  PubMed  Google Scholar 

  4. Drummond JL (2008) Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 87:710–719. https://doi.org/10.1177/154405910808700802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leinfelder KF (1988) Posterior composite resins. J Am Dent Assoc 117:21E–26E

    Article  CAS  Google Scholar 

  6. Brunthaler A, König F, Lucas T et al (2003) Longevity of direct resin composite restorations in posterior teeth: a review. Clin Oral Investig 7:63–70. https://doi.org/10.1007/s00784-003-0206-7

    Article  CAS  PubMed  Google Scholar 

  7. Deligeorgi V, Mjör IA, Wilson NH (2001) An overview of reasons for the placement and replacement of restorations. Prim Dent Care 8:5–11

    Article  CAS  Google Scholar 

  8. Kopperud SE, Tveit AB, Gaarden T et al (2012) Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci 120:539–548. https://doi.org/10.1111/eos.12004

    Article  PubMed  Google Scholar 

  9. Sakaguchi RL (2005) Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17–19, 2004, Oregon Health & Science University, Portland, Oregon. In: Dental materials, pp 3–6

    Google Scholar 

  10. Van Dijken JWV, Pallesen U (2013) A six-year prospective randomized study of a nano-hybrid and a conventional hybrid resin composite in Class II restorations. In: Dental materials, pp 191–198

    Google Scholar 

  11. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38

    Article  CAS  Google Scholar 

  12. Opdam NJM, Van De Sande FH, Bronkhorst E et al (2014) Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res 93:943–949

    Article  CAS  Google Scholar 

  13. Demarco FF, Collares K, Coelho-De-Souza FH et al (2015) Anterior composite restorations: a systematic review on long-term survival and reasons for failure. Dent Mater 31:1214–1224

    Article  Google Scholar 

  14. Beck F, Lettner S, Graf A et al (2015) Survival of direct resin restorations in posterior teeth within a 19-year period (1996–2015): a meta-analysis of prospective studies. Dent Mater 31:958–985

    Article  CAS  Google Scholar 

  15. Imazato S (2003) Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 19:449–457

    Article  CAS  Google Scholar 

  16. Imazato S, Hua CJ, Ma S et al (2012) Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev 48:115–125

    Article  Google Scholar 

  17. Kasraei S, Sami L, Hendi S et al (2014) Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and lactobacillus. Restor Dent Endod 39:109–114. https://doi.org/10.5395/rde.2014.39.2.109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moshaverinia A, Ansari S, Moshaverinia M et al (2011) Ultrasonically set novel NVC-containing glass-ionomer cements for applications in restorative dentistry. J Mater Sci Mater Med 22:2029–2034. https://doi.org/10.1007/s10856-011-4391-7

    Article  CAS  PubMed  Google Scholar 

  19. Qi YP, Li N, Niu LN et al (2012) Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater 8:836–842. https://doi.org/10.1016/j.actbio.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  20. Sauro S, Osorio R, Watson TF, Toledano M (2012) Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J Mater Sci Mater Med 23:1521–1532. https://doi.org/10.1007/s10856-012-4606-6

    Article  CAS  PubMed  Google Scholar 

  21. Kokubo T (1998) Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46:2519–2527. https://doi.org/10.1016/S1359-6454(98)80036-0

    Article  CAS  Google Scholar 

  22. Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Apatite-forming ability of alkali-treated Ti metal in body environment. J Ceram Soc Jpn 105(1218):111–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Papagerakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sulaiman Ghandourah, B. et al. (2019). In Vitro Caries Models for the Assessment of Novel Restorative Materials. In: Papagerakis, P. (eds) Odontogenesis. Methods in Molecular Biology, vol 1922. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9012-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9012-2_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9011-5

  • Online ISBN: 978-1-4939-9012-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics