Skip to main content

Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data

  • Protocol
  • First Online:
Computational Methods for Single-Cell Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1935))

Abstract

Single-cell RNA-Sequencing is a pioneering extension of bulk-based RNA-Sequencing technology. The “guilt-by-association” heuristic has led to the use of gene co-expression networks to identify genes that are believed to be associated with a common cellular function. Many methods that were developed for bulk-based RNA-Sequencing data can continue to be applied to single-cell data, and several of the most widely used methods are explored. Several methods for leveraging the novel time information contained in single-cell data when constructing gene co-expression networks, which allows for the incorporation of directed associations, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolfe C, Kohane I, Butte A (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinformatics 6(1):227

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  CAS  PubMed  Google Scholar 

  3. Schafer J, Strimmer K (2005) An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764

    Article  PubMed  Google Scholar 

  4. Lee HK et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Persson H et al (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 102(24):8633–8638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basso K et al (2005) Reverse engineering of regulatory networks in human b cells. Nat Genet 37(4):382–390

    Article  CAS  PubMed  Google Scholar 

  7. Munksy B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336(6078):183–187

    Article  Google Scholar 

  8. Trapnell C et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell K, Yau C (2015) Bayesian Gaussian process latent variable models for pseudotime inference in single-cell rna-seq data. bioRxiv. p. 026872

    Google Scholar 

  10. Reid JE, Wernisch L (2016) Pseudotime estimation: deconfounding single cell time series. Bioinformatics 32(19):2973–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campbell K, Ponting CP, Webber C (2015) Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell rna-seq profiles. bioRxiv. p 027219

    Google Scholar 

  12. Bendall SC et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell 157(3):714–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garber M et al (2011) Computational methods for transcriptome annotation and quantification using rna-seq. Nat Methods 8(6):469

    Article  CAS  PubMed  Google Scholar 

  14. Bullard JH et al (2010) Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments. BMC Bioinformatics 11(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  15. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of rna-seq data. Genome Biol 11(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  17. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iancu D et al (2012) Utilizing rna-seq data for de novo coexpression network inference. Bioinformatics 28(12):1592–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim H et al (2013) Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res 20(3):287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue Z et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Specht AT, Li J (2015) Estimation of gene co-expression from rna-seq count data. Stat Interface 8(4):507–515

    Article  Google Scholar 

  22. Li J, Lamere AT (2018) DiPhiSeq: Robust comparison of expression levels on RNA-Seq data with large sample sizes. Paper presented at the Joint Statistical Meetings, Vancouver, CA, 28 July–2 Aug 2018

    Google Scholar 

  23. Specht AT, Li J (2016) LEAP: constructing gene co-expression networks for single-cell rna-sequencing data using pseudotime ordering. Bioinformatics 33(5):764–766

    PubMed Central  Google Scholar 

  24. Ding B, Zheng L, Wang W (2017) Assessment of single cell rna-seq normalization methods. G3 (Bethesda) 7(7):2039–2045

    Article  CAS  Google Scholar 

  25. Risso D et al (2014) Normalization of rna-seq data using factor analysis of control genes or samples. Nat Biotechnol 32(9):896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wan YW et al (2016) XMRF: an R package to fit markov networks to high-throughput genetics data. BMC Syst Biol 10(3):69

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allen GI, Liu Z (2013) A local poisson graphical model for inferring networks from sequencing data. IEEE Trans Nanobioscience 12(3):189–198

    Article  PubMed  Google Scholar 

  28. Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  29. Margolin AA et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ocone A et al (2015) Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31(12):i89–i96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coifman RR et al (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci U S A 102(21):7426–7431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huynh-Thu VA et al (2010) Inferring gene regulatory networks from expression data using tree-based methods. PLoS One 5(9):e12776

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chan TE et al (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5(3):251–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papili Gao N et al (2017) SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 34(2):258–266

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia T. Lamere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lamere, A.T., Li, J. (2019). Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data. In: Yuan, GC. (eds) Computational Methods for Single-Cell Data Analysis. Methods in Molecular Biology, vol 1935. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9057-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9057-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9056-6

  • Online ISBN: 978-1-4939-9057-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics