Skip to main content

Manipulating Neuronal Activity in the Developing Zebrafish Spinal Cord to Investigate Adaptive Myelination

  • Protocol
  • First Online:
Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

In the central nervous system, oligodendrocyte-lineage cells and myelination can adapt to physiological brain activity. Since myelin can in turn regulate neuronal function, such “adaptive” myelination has been proposed as a form of nervous system plasticity, implicated in learning and cognition. The molecular and cellular mechanisms underlying adaptive myelination and its functional consequences remain to be fully defined, partly because it remains challenging to manipulate activity and monitor myelination over time in vivo at single-cell resolution, in a model that would also allow examination of the functional output of individual neurons and circuits. Here, we describe a workflow to manipulate neuronal activity and to assess oligodendrocyte-lineage cell dynamics and myelination in larval zebrafish, a vertebrate animal model that is ideal for live imaging and amenable to genetic discovery, and that has well-characterized neuronal circuits with myelinated axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sampaio-Baptista C, Johansen-Berg H (2017) White matter plasticity in the adult brain. Neuron 96:1239–1251

    Article  CAS  Google Scholar 

  2. Makinodan M, Rosen KM, Ito S et al (2012) A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–1360

    Article  CAS  Google Scholar 

  3. Hill RA, Patel KD, Goncalves CM et al (2014) Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17:1518–1527

    Article  CAS  Google Scholar 

  4. McKenzie IA, Ohayon D, Li H et al (2014) Motor skill learning requires active central myelination. Science 346:318–322

    Article  CAS  Google Scholar 

  5. Hughes EG, Orthmann-Murphy JL, Langseth AJ et al (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696–706

    Article  CAS  Google Scholar 

  6. Kougioumtzidou E, Shimizu T, Hamilton NB et al (2017) Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. Elife 6:e28080

    Article  Google Scholar 

  7. Gibson EM, Purger D, Mount CW et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304

    Article  Google Scholar 

  8. Mitew S, Gobius I, Fenlon LR et al (2018) Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9:306

    Article  Google Scholar 

  9. Mensch S, Baraban M, Almeida R et al (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18:628–630

    Article  CAS  Google Scholar 

  10. Koudelka S, Voas MG, Almeida RG et al (2016) Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr Biol 26:1447–1455

    Article  CAS  Google Scholar 

  11. Krasnow AM, Ford MC, Valdivia LE et al (2018) Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat Neurosci 21:24–28

    Article  CAS  Google Scholar 

  12. Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149–161

    Article  CAS  Google Scholar 

  13. Nagy B, Hovhannisyan A, Barzan R et al (2017) Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol 15:e2001993

    Article  Google Scholar 

  14. Almeida RG, Lyons DA (2017) On myelinated axon plasticity and neuronal circuit formation and function. J Neurosci 37:10023–10034

    Article  CAS  Google Scholar 

  15. Czopka T (2016) Insights into mechanisms of central nervous system myelination using zebrafish. Glia 64:333–349

    Article  Google Scholar 

  16. Preston MA, Macklin WB (2015) Zebrafish as a model to investigate CNS myelination. Glia 63:177–193

    Article  Google Scholar 

  17. Almeida RG, Czopka T, Ffrench-Constant C et al (2011) Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138:4443–4450

    Article  CAS  Google Scholar 

  18. Hildebrand DGC, Cicconet M, Torres RM et al (2017) Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545:345–349

    Article  CAS  Google Scholar 

  19. Lacoste AMB, Schoppik D, Robson DN et al (2015) A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Curr Biol 25:1526–1534

    Article  CAS  Google Scholar 

  20. Dunn TW, Gebhardt C, Naumann EA et al (2016) Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 89:613–628

    Article  CAS  Google Scholar 

  21. Naumann EA, Fitzgerald JE, Dunn TW et al (2016) From whole-brain data to functional circuit models: the zebrafish optomotor response. Cell 167:947–960.e20

    Article  CAS  Google Scholar 

  22. Severi KE, Portugues R, Marques JC et al (2014) Neural control and modulation of swimming speed in the larval zebrafish. Neuron 83:692–707

    Article  CAS  Google Scholar 

  23. Ahrens MB, Li JM, Orger MB et al (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477

    Article  CAS  Google Scholar 

  24. Lovett-Barron M, Andalman AS, Allen WE et al (2017) Ancestral circuits for the coordinated modulation of brain state. Cell 171:1411–1423.e17

    Article  CAS  Google Scholar 

  25. Ben Fredj N, Hammond S, Otsuna H et al (2010) Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. J Neurosci 30:10939–10951

    Article  CAS  Google Scholar 

  26. Hines JH, Ravanelli AM, Schwindt R et al (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18:683–689

    Article  CAS  Google Scholar 

  27. Sternberg JR, Severi KE, Fidelin K et al (2016) Optimization of a neurotoxin to investigate the contribution of excitatory interneurons to speed modulation in vivo. Curr Biol 26:2319–2328

    Article  CAS  Google Scholar 

  28. Burrone J, O’Byrne M, Murthy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420:414–418

    Article  CAS  Google Scholar 

  29. Hua JY, Smear MC, Baier H et al (2005) Regulation of axon growth in vivo by activity-based competition. Nature 434:1022–1026

    Article  CAS  Google Scholar 

  30. Chen S, Chiu CN, McArthur KL et al (2016) TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 13:147–150

    Article  Google Scholar 

  31. Wei C, Thatcher EJ, Olena AF et al (2013) miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PLoS One 8:e57080

    Article  CAS  Google Scholar 

  32. Leung LC, Wang GX, Mourrain P (2013) Imaging zebrafish neural circuitry from whole brain to synapse. Front Neural Circuits 7:76

    Article  Google Scholar 

  33. Renninger SL, Orger MB (2013) Two-photon imaging of neural population activity in zebrafish. Methods 62:255–267

    Article  CAS  Google Scholar 

  34. Muto A, Kawakami K (2016) Calcium imaging of neuronal activity in free-swimming larval zebrafish. Methods Mol Biol 1451:333–341

    Article  CAS  Google Scholar 

  35. Granseth B, Odermatt B, Royle SJ et al (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786

    Article  CAS  Google Scholar 

  36. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    Article  CAS  Google Scholar 

  37. D’Rozario M, Monk KR, Petersen SC (2017) Analysis of myelinated axon formation in zebrafish. Methods Cell Biol 138:383–414

    Article  Google Scholar 

  38. Almeida RG, Lyons DA. Intersectional gene expression in zebrafish using the split KalTA4 system. Zebrafish 12:377–386

    Article  CAS  Google Scholar 

  39. Almeida R, Lyons D (2016) Oligodendrocyte development in the absence of their target axons in vivo. PLoS One 11:e0164432

    Article  Google Scholar 

  40. Early JJ, Cole KL, Williamson JM et al (2018) An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. Elife 7:e35136

    Article  Google Scholar 

  41. Akitake CM, Macurak M, Halpern ME et al (2011) Transgenerational analysis of transcriptional silencing in zebrafish. Dev Biol 352:191–201

    Article  CAS  Google Scholar 

  42. Ghosh A, Halpern ME (2016) Transcriptional regulation using the Q system in transgenic zebrafish. Methods Cell Biol 135:205–218

    Article  CAS  Google Scholar 

  43. Gansner JM, Dang M, Ammerman M et al (2017) Transplantation in zebrafish. Methods Cell Biol 138:629–647

    Article  CAS  Google Scholar 

  44. Park HC, Kim CH, Bae YK et al (2000) Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227:279–293

    Article  CAS  Google Scholar 

  45. Peri F, Nüsslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jill M. Williamson or Rafael G. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Williamson, J.M., Lyons, D.A., Almeida, R.G. (2019). Manipulating Neuronal Activity in the Developing Zebrafish Spinal Cord to Investigate Adaptive Myelination. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics