Skip to main content

FACS Analysis of Col1α Protein Levels in Primary Fibroblasts

  • Protocol
  • First Online:
Collagen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1944))

Abstract

Chronic inflammatory diseases are often associated with organ fibrosis, a progressive condition in which excessive deposition of extracellular matrix (ECM), mainly composed of collagen I (Col I), is deposited by activated fibroblasts and severely impairs tissue architecture and function, eventually resulting in organ failure. Moreover, enhanced collagen deposition by activated fibroblasts and increased stiffness of the extracellular matrix were demonstrated to be associated with tumor progression and metastasis. In order to quantitatively analyze fibrotic activation of fibroblasts and collagen deposition, it is essential to assess collagen content. While various histological methods allow assessment of collagen in tissue sections (e.g., Masson trichrome and Sirius red), reliable measurement and quantification of collagen levels in vitro remain a challenge in the field. In this protocol, we utilize intracellular staining of Col1α and flow cytometry analysis to analyze collagen content in primary fibroblasts isolated from fresh single cell suspensions of metastases-bearing lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. https://doi.org/10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  2. Östman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth - bystanders turning into key players. Curr Opin Genet Dev 19:67–73. https://doi.org/10.1016/j.gde.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Erez N, Glanz S, Raz Y et al (2013) Cancer-associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem Biophys Res Commun 437:397–402. https://doi.org/10.1016/j.bbrc.2013.06.089

    Article  CAS  PubMed  Google Scholar 

  4. Erez N, Truitt M, Olson P, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient Neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147. https://doi.org/10.1016/j.ccr.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  5. Feig C, Jones JO, Kraman M et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti—PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110:20212–20217. https://doi.org/10.1073/pnas.1320318110 http://www.pnas.org/cgi/doi/10.1073/pnas.1320318110/-/DCSupplemental

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martey CA, Pollock SJ, Turner CK et al (2004) Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E 2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol 14642:981–991. https://doi.org/10.1152/ajplung.00239.2003

    Article  CAS  Google Scholar 

  7. Sharon Y, Raz Y, Cohen N et al (2015) Tumor-derived Osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res 75(6):963–974. https://doi.org/10.1158/0008-5472.CAN-14-1990

    Article  CAS  PubMed  Google Scholar 

  8. Lotti F, Jarrar AM, Pai RK et al (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210:2851–2872. https://doi.org/10.1084/jem.20131195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goetz JG, Minguet S, Navarro-lérida I et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163. https://doi.org/10.1016/j.cell.2011.05.040.Biomechanical

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906. https://doi.org/10.1016/j.cell.2009.10.027.Matrix

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erler JT, Weaver VM (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26:35–49. https://doi.org/10.1007/s10585-008-9209-8

    Article  PubMed  Google Scholar 

  12. Cox TR, Bird D, Baker A et al (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73:1721–1732. https://doi.org/10.1158/0008-5472.CAN-12-2233.LOX-mediated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226. https://doi.org/10.1038/nature04695

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen SR, Quaranta V, Linford A et al (2016) Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol 18:549–560. https://doi.org/10.1038/ncb3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bauman TM, Nicholson TM, Abler LL et al (2014) Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules. PLoS One 9:1–9. https://doi.org/10.1371/journal.pone.0109102

    Article  CAS  Google Scholar 

  16. Street JM, Souza ACP, Alvarez-Prats A et al (2014) Automated quantification of renal fibrosis with Sirius red and polarization contrast microscopy. Physiol Rep 2:1–9. https://doi.org/10.14814/phy2.12088

    Article  Google Scholar 

  17. Adan A, Alizada G, Kiraz Y et al (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37:163–176. https://doi.org/10.3109/07388551.2015.1128876

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neta Erez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cohen, N., Erez, N. (2019). FACS Analysis of Col1α Protein Levels in Primary Fibroblasts. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics