Skip to main content

Modeling Autism-Related Disorders in Mice with Maternal Immune Activation (MIA)

  • Protocol
  • First Online:
Mouse Models of Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1960))

Abstract

Autism spectrum disorder (ASD) has emerged as one of the most prevalent and poorly understood disorders of our time. The etiology of autism currently remains poorly understood; however, emerging clinical and experimental evidence suggests central roles for maternal immune activation (MIA) during pregnancy in ASD. In particular, children whose mothers suffered from an infectious disease or other inflammatory conditions during pregnancy are at a substantially higher risk of developing ASD. It has been shown that MIA-induced ASD can be modeled by treating pregnant mice with the viral mimetic polyinosinic-polycytidylic acid (PolyI:C) during key neurodevelopmental time points. In this paradigm, PolyI:C treatment induces systemic inflammatory responses that model MIA during viral infections. Offspring from PolyI:C-treated mothers develop many of the defining features of ASD including defects in social interactions, communicative impairments, and repetitive/stereotyped behaviors, as well as neuropathologies that are commonly observed in human ASD. While the early use of this emerging ASD model system has provided important initial insights into the involvement of gestational immune dysfunction in neurodevelopmental disorder pathogenesis, we have only just begun to scratch the surface in our understanding of how MIA affects brain maturation and contributes to neurodevelopmental disease. Here we describe best practices for how the PolyI:C model of MIA can be used to study autism-related disorders in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atladottir HO, Pedersen MG, Thorsen P et al (2009) Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 124(2):687–694. https://doi.org/10.1542/peds.2008-2445

    Article  PubMed  Google Scholar 

  2. Atladottir HO, Thorsen P, Ostergaard L et al (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40(12):1423–1430. https://doi.org/10.1007/s10803-010-1006-y

    Article  PubMed  Google Scholar 

  3. Patterson PH (2011) Maternal infection and immune involvement in autism. Trends Mol Med 17(7):389–394. https://doi.org/10.1016/j.molmed.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mednick SA, Machon RA, Huttunen MO et al (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45(2):189–192

    Article  CAS  PubMed  Google Scholar 

  5. Brown AS, Schaefer CA, Wyatt RJ et al (2000) Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull 26(2):287–295

    Article  CAS  PubMed  Google Scholar 

  6. Chess S (1971) Autism in children with congenital rubella. J Autism Child Schizophr 1(1):33–47

    Article  CAS  PubMed  Google Scholar 

  7. Chess S (1977) Follow-up report on autism in congenital rubella. J Autism Child Schizophr 7(1):69–81

    Article  CAS  PubMed  Google Scholar 

  8. Chess S, Fernandez P, Korn S (1978) Behavioral consequences of congenital rubella. J Pediatr 93(4):699–703

    Article  CAS  PubMed  Google Scholar 

  9. Brimberg L, Sadiq A, Gregersen PK et al (2013) Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol Psychiatry 18(11):1171–1177. https://doi.org/10.1038/mp.2013.101

    Article  CAS  PubMed  Google Scholar 

  10. Knuesel I, Chicha L, Britschgi M et al (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10(11):643–660. https://doi.org/10.1038/nrneurol.2014.187

    Article  CAS  PubMed  Google Scholar 

  11. Estes ML, McAllister AK (2015) Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 16(8):469–486. https://doi.org/10.1038/nrn3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braunschweig D, Van de Water J (2012) Maternal autoantibodies in autism. Arch Neurol 69(6):693–699. https://doi.org/10.1001/archneurol.2011.2506

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deykin EY, MacMahon B (1979) Viral exposure and autism. Am J Epidemiol 109(6):628–638

    Article  CAS  PubMed  Google Scholar 

  14. Zuckerman L, Rehavi M, Nachman R et al (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28(10):1778–1789. https://doi.org/10.1038/sj.npp.1300248

    Article  CAS  PubMed  Google Scholar 

  15. Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39(3):311–323. https://doi.org/10.1016/j.jpsychires.2004.08.008

    Article  PubMed  Google Scholar 

  16. Shi L, Fatemi SH, Sidwell RW et al (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23(1):297–302

    Article  PubMed  PubMed Central  Google Scholar 

  17. Smith SE, Li J, Garbett K et al (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27(40):10695–10702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malkova NV, Yu CZ, Hsiao EY et al (2012) Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 26(4):607–616. https://doi.org/10.1016/j.bbi.2012.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi GB, Yim YS, Wong H et al (2016) The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351(6276):933–939. https://doi.org/10.1126/science.aad0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin Yim Y, Park A, Berrios J et al (2017) Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549(7673):482–487. https://doi.org/10.1038/nature23909

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Kim H, Yim YS et al (2017) Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549(7673):528–532. https://doi.org/10.1038/nature23910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Cazakoff BN, Thai CA et al (2012) Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology 62(3):1299–1307. https://doi.org/10.1016/j.neuropharm.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  24. Schaafsma SM, Gagnidze K, Reyes A et al (2017) Sex-specific gene-environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci U S A 114(6):1383–1388. https://doi.org/10.1073/pnas.1619312114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Werling DM, Geschwind DH (2013) Sex differences in autism spectrum disorders. Curr Opin Neurol 26(2):146–153. https://doi.org/10.1097/WCO.0b013e32835ee548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abel KM, Drake R, Goldstein JM (2010) Sex differences in schizophrenia. Int Rev Psychiatry 22(5):417–428. https://doi.org/10.3109/09540261.2010.515205

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Tony Filiano, members of the Lukens lab, and the Center for Brain Immunology and Glia (BIG) for valuable discussions. This work was supported by The Hartwell Foundation (Individual Biomedical Research Award to J.R.L.), the Owens Family Foundation (J.R.L.), and the Simons Foundation Autism Research Initiative (Pilot Award 515305 to J.R.L.). C.R.L. was supported by a NIH National Institute of General Medical Sciences predoctoral training grant (3T32GM008328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Lukens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lammert, C.R., Lukens, J.R. (2019). Modeling Autism-Related Disorders in Mice with Maternal Immune Activation (MIA). In: Allen, I. (eds) Mouse Models of Innate Immunity. Methods in Molecular Biology, vol 1960. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9167-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9167-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9166-2

  • Online ISBN: 978-1-4939-9167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics