Skip to main content

Toward In Vivo Gene Therapy Using CRISPR

  • Protocol
  • First Online:
CRISPR Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1961))

Abstract

CRISPR, a revolutionizing technology allowing researchers to navigate in and edit the genome, is moving on the fast track toward clinical use for ex vivo correction of disease-causing mutations in stem cells. As we await the first trials utilizing ex vivo CRISPR editing, implementation of CRISPR-based gene editing as an in vivo treatment directly in patients still remains an ultimate challenge. However, quickly accumulating evidence has provided proof-of-concept for efficacious editing in vivo. Attempts to edit genes directly in animals have largely relied on classical vector systems based on virus-based delivery of gene cassettes encoding the Cas9 endonuclease and single guide RNA, the key components of the CRISPR system. However, whereas persistent gene expression has been the primary goal of gene therapy for decades, things may be different in the case of CRISPR delivery. Is short-term presence of the CRISPR components perhaps sufficient for efficacy and ideal for safety?—and are strategies needed for restricting immune recognition of the bacteria-derived editing tool? Here, while answers to these questions still blow in the wind, we review prominent examples of genome editing with focus on targeting of genes with CRISPR in liver, muscles, and eyes of the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH (2017) Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. Elife 6:e27873

    Article  Google Scholar 

  2. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389

    Article  CAS  Google Scholar 

  3. DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Munoz DP, Boffelli D et al (2016) Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8:360ra134

    Article  Google Scholar 

  4. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    Article  CAS  Google Scholar 

  5. Cai Y, Laustsen A, Zhou Y, Sun C, Anderson MV, Li S, Uldbjerg N, Luo Y, Jakobsen MR, Mikkelsen JG (2016) Targeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors. Elife 5:e12213

    Article  Google Scholar 

  6. Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW, Shivak DA, Surosky RT, Gregory PD, Holmes MC et al (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263

    Article  CAS  Google Scholar 

  7. George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, Cuker A, Sullivan LM, Majumdar S, Teitel J et al (2017) Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 377:2215–2227

    Article  CAS  Google Scholar 

  8. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553

    Article  CAS  Google Scholar 

  9. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, Tang L, Liu D, Tang L, Jin J et al (2014) Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett 588:3954–3958

    Article  CAS  Google Scholar 

  10. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115:488–492

    Article  CAS  Google Scholar 

  11. Wang D, Mou H, Li S, Li Y, Hough S, Tran K, Li J, Yin H, Anderson DG, Sontheimer EJ et al (2015) Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 26:432–442

    Article  CAS  Google Scholar 

  12. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191

    Article  CAS  Google Scholar 

  13. Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML, Gersbach CA (2018) RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun 9:1674

    Article  Google Scholar 

  14. Jarrett KE, Lee CM, Yeh YH, Hsu RH, Gupta R, Zhang M, Rodriguez PJ, Lee CS, Gillard BK, Bissig KD et al (2017) Sci Rep 7:44624

    Article  Google Scholar 

  15. Calcedo R, Somanathan S, Qin Q, Betts MR, Rech AJ, Vonderheide RH, Mueller C, Flotte TR, Wilson JM (2017) Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for alpha-1-antitrypsin deficiency. Proc Natl Acad Sci U S A 114:1655–1659

    Article  CAS  Google Scholar 

  16. Chiuchiolo MJ, Kaminsky SM, Sondhi D, Hackett NR, Rosenberg JB, Frenk EZ, Hwang Y, Van de Graaf BG, Hutt JA, Wang G et al (2013) Intrapleural administration of an AAVrh.10 vector coding for human alpha1-antitrypsin for the treatment of alpha1-antitrypsin deficiency. Hum Gene Ther Clin Dev 24:161–173

    Article  CAS  Google Scholar 

  17. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, Campbell-Thompson M, Yachnis AT, Sandhaus RA, McElvaney NG et al (2011) Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther 22:1239–1247

    Article  CAS  Google Scholar 

  18. Gruntman AM, Flotte TR (2017) Therapeutics: gene therapy for alpha-1 antitrypsin deficiency. Methods Mol Biol 1639:267–275

    Article  CAS  Google Scholar 

  19. Mueller C, Gernoux G, Gruntman AM, Borel F, Reeves EP, Calcedo R, Rouhani FN, Yachnis A, Humphries M, Campbell-Thompson M et al (2017) 5 Year expression and neutrophil defect repair after gene therapy in alpha-1 antitrypsin deficiency. Mol Ther 25:1387–1394

    Article  CAS  Google Scholar 

  20. Shen S, Sanchez ME, Blomenkamp K, Corcoran EM, Marco E, Yudkoff CJ, Jiang H, Teckman JH, Bumcrot D, Albright CF (2018) Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 29(8):861–873

    Article  CAS  Google Scholar 

  21. Song CQ, Wang D, Jiang T, O’Connor K, Tang Q, Cai L, Li X, Weng Z, Yin H, Gao G et al (2018) In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum Gene Ther 29(8):853–860

    Article  CAS  Google Scholar 

  22. Singh K, Evens H, Nair N, Rincon MY, Sarcar S, Samara-Kuko E, Chuah MK, VandenDriessche T (2018) Efficient in vivo liver-directed gene editing using CRISPR/Cas9. Mol Ther 26:1241–1254

    Article  CAS  Google Scholar 

  23. Petris G, Casini A, Montagna C, Lorenzin F, Prandi D, Romanel A, Zasso J, Conti L, Demichelis F, Cereseto A (2017) Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nat Commun 8:15334

    Article  CAS  Google Scholar 

  24. Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A (2017) CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Mol Ther 25:331–341

    Article  CAS  Google Scholar 

  25. Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T et al (2017) The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep 20:2980–2991

    Article  CAS  Google Scholar 

  26. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407

    Article  CAS  Google Scholar 

  27. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411

    Article  CAS  Google Scholar 

  28. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403

    Article  CAS  Google Scholar 

  29. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454

    Article  CAS  Google Scholar 

  30. Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, Bhattacharyya S, Schmidt F, Grimm D et al (2017) Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 9(418):eaan8081

    Article  Google Scholar 

  31. Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O’Keefe DD, Nunez-Delicado E et al (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171:1495–1507. e1415

    Article  CAS  Google Scholar 

  32. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    Article  CAS  Google Scholar 

  33. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN et al (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24:556–563

    Article  CAS  Google Scholar 

  34. Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis GC, Leocani L, Andreazzoli M, Broccoli V (2018) Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 27:761–779

    Article  CAS  Google Scholar 

  35. Li P, Kleinstiver BP, Leon MY, Prew MS, Navarro-Gomez D, Greenwald SH, Pierce EA, Keith Joung J, Liu Q (2018) Allele-specific CRISPR-Cas9 genome editing of the single-base P23H mutation for rhodopsin-associated dominant retinitis pigmentosa. CRISPR J 1:55–64

    Article  Google Scholar 

  36. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T et al (2017) Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun 8:14716

    Article  Google Scholar 

  37. Moreno AM, Fu X, Zhu J, Katrekar D, Shih YV, Marlett J, Cabotaje J, Tat J, Naughton J, Lisowski L et al (2018) In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther 26(7):1818–1827

    Article  CAS  Google Scholar 

  38. Latella MC, Di Salvo MT, Cocchiarella F, Benati D, Grisendi G, Comitato A, Marigo V, Recchia A (2016) In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5:e389

    Article  CAS  Google Scholar 

  39. Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D’Amore PA et al (2017) Genome editing abrogates angiogenesis in vivo. Nat Commun 8:112

    Article  Google Scholar 

  40. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim KE, Kim JH, Kim JS (2017) Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27:419–426

    Article  CAS  Google Scholar 

  41. Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, Mikkelsen JG, Corydon TJ (2017) In vivo knockout of the Vegfa Gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol Ther Nucleic Acids 9:89–99

    Article  CAS  Google Scholar 

  42. Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F et al (2017) CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci U S A 114:11199–11204

    Article  CAS  Google Scholar 

  43. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S et al (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500

    Article  CAS  Google Scholar 

  44. Montana CL, Kolesnikov AV, Shen SQ, Myers CA, Kefalov VJ, Corbo JC (2013) Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 110:1732–1737

    Article  CAS  Google Scholar 

  45. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80

    Article  CAS  Google Scholar 

  46. Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y et al (2018) Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553:217–221

    Article  CAS  Google Scholar 

  47. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13:868–874

    Article  CAS  Google Scholar 

  48. Mortensen R, Nissen TN, Blauenfeldt T, Christensen JP, Andersen P, Dietrich J (2015) Adaptive immunity against Streptococcus pyogenes in adults involves increased IFN-gamma and IgG3 responses compared with children. J Immunol 195:1657–1664

    Article  CAS  Google Scholar 

  49. Colque-Navarro P, Jacobsson G, Andersson R, Flock JI, Mollby R (2010) Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. Clin Vaccine Immunol 17:1117–1123

    Article  CAS  Google Scholar 

  50. Dryla A, Prustomersky S, Gelbmann D, Hanner M, Bettinger E, Kocsis B, Kustos T, Henics T, Meinke A, Nagy E (2005) Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin Diagn Lab Immunol 12:387–398

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Charlesworth CT, Deshpande PS, Dever DP, Dejene B, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Camarena J, Weinberg KI, Porteus MH (2018) Identification of pre-existing adaptive immunity to Cas9 proteins in humans. BioRxiv. https://doi.org/10.1101/243345

  52. Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y et al (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra161

    Article  Google Scholar 

  53. Cai Y, Bak RO, Mikkelsen JG (2014) Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife 3:e01911

    Article  Google Scholar 

  54. Choi JG, Dang Y, Abraham S, Ma H, Zhang J, Guo H, Cai Y, Mikkelsen JG, Wu H, Shankar P et al (2016) Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther 23:627–633

    Article  CAS  Google Scholar 

  55. Skipper KA, Nielsen MG, Andersen S, Ryo LB, Bak RO, Mikkelsen JG (2018) Time-restricted PiggyBac DNA transposition by transposase protein delivery using lentivirus-derived nanoparticles. Mol Ther Nucleic Acids 11:253–262

    Article  CAS  Google Scholar 

  56. Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K et al (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35:1179–1187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research focusing on genome engineering technologies in the laboratory of JGM is made possible through support of the Danish Council for Independent Research │ Medical Sciences (grant DFF-4004-00220), The Lundbeck Foundation (grant R126-2012-12456), the Novo Nordisk Foundation, the Hørslev Foundation, Aase og Ejnar Danielsens Fond, Grosserer L. F. Foghts Fond, Agnes og Poul Friis Fond, Oda og Hans Svenningsens Fond, Ellen og Mogens Wedell-Wedellsborgs Fond, Einar Willumsens Mindelegat, Snedkermester Sophus Jacobsen & Hustru Astrid Jacobsens Fond, Familien Hede Nielsens Fond, Carl og Ellen Hertz’ legat til læge- og naturvidenskaben, Harboefonden, Arvid Nilssons Fond, Fonden af 1870, Emil C. Hertz og hustru Inger Hertz’s Fond, Holger Hjortenberg og Hustru Dagmar Hjortenbergs Fond, Krista og Viggo Petersens Fond, Frode V. Nyegaard og Hustrus Fond, and Andersen-Isted Fonden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Giehm Mikkelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skipper, K.A., Mikkelsen, J.G. (2019). Toward In Vivo Gene Therapy Using CRISPR. In: Luo, Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, vol 1961. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9170-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9170-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9169-3

  • Online ISBN: 978-1-4939-9170-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics