Skip to main content

Classification of Protein Disulphide Bonds

  • Protocol
  • First Online:
Functional Disulphide Bonds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1967))

Abstract

Protein disulphide bonds are the links between pairs of cysteine residues in the polypeptide chain. These bonds are classified based on the sign of the five dihedral angles that define the cystine residue. Twenty disulphide conformations are possible using this convention and all 20 are represented in protein structures. Force distribution analysis of the pairwise forces between the cysteine residues of the different conformations identified 2 of the 20 as having significant strain: the −RHstaple and −/+RHhook disulphide bonds. These two disulphide conformations are associated with allosteric function in proteins. An online tool is available that provides a comprehensive analysis of disulphide bonds in protein structures, including conformation, strain energy, solvent accessibility and secondary structures that the disulphide links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45:7429–7433

    Article  CAS  Google Scholar 

  2. Schmidt B, Hogg PJ (2007) Search for allosteric disulfide bonds in NMR structures. BMC Struct Biol 7:49. https://doi.org/10.1186/1472-6807-7-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hogg PJ (2013) Targeting allosteric disulphide bonds in cancer. Nat Rev Cancer 13:425–431. https://doi.org/10.1038/nrc3519

    Article  CAS  PubMed  Google Scholar 

  4. Harrison PM, Sternberg MJ (1996) The disulphide beta-cross: from cystine geometry and clustering to classification of small disulphide-rich protein folds. J Mol Biol 264:603–623

    Article  CAS  Google Scholar 

  5. Hutchinson EG, Thornton JM (1996) PROMOTIF – a program to identify and analyze structural motifs in proteins. Protein Sci 5:212–220. https://doi.org/10.1002/pro.5560050204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ozhogina OA, Bominaar EL (2009) Characterization of the kringle fold and identification of a ubiquitous new class of disulfide rotamers. J Struct Biol 168:223–233. https://doi.org/10.1016/j.jsb.2009.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cook KM, Hogg PJ (2013) Post-translational control of protein function by disulfide bond cleavage. Antioxid Redox Signal 18:1987–2015. https://doi.org/10.1089/ars.2012.4807

    Article  CAS  PubMed  Google Scholar 

  8. Marques JR, da Fonseca RR, Drury B, Melo A (2010) Conformational characterization of disulfide bonds: a tool for protein classification. J Theor Biol 267:388–395. https://doi.org/10.1016/j.jtbi.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  9. Pijning AE, Chiu J, Yeo RX, Wong JWH, Hogg PJ (2018) Identification of allosteric disulfides from labile bonds in X-ray structures. R Soc Open Sci 5:171058. https://doi.org/10.1098/rsos.171058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuwajima K, Ikeguchi M, Sugawara T, Hiraoka Y, Sugai S (1990) Kinetics of disulfide bond reduction in alpha-lactalbumin by dithiothreitol and molecular basis of superreactivity of the Cys6-Cys120 disulfide bond. Biochemistry 29:8240–8249

    Article  CAS  Google Scholar 

  11. Pjura PE, Matsumura M, Wozniak JA, Matthews BW (1990) Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein. Biochemistry 29:2592–2598

    Article  CAS  Google Scholar 

  12. Wells JA, Powers DB (1986) In vivo formation and stability of engineered disulfide bonds in subtilisin. J Biol Chem 261:6564–6570

    CAS  PubMed  Google Scholar 

  13. Wetzel R, Perry LJ, Baase WA, Becktel WJ (1988) Disulfide bonds and thermal stability in T4 lysozyme. Proc Natl Acad Sci U S A 85:401–405

    Article  CAS  Google Scholar 

  14. Zhou B, Baldus IB, Li W, Edwards SA, Grater F (2014) Identification of allosteric disulfides from prestress analysis. Biophys J 107:672–681. https://doi.org/10.1016/j.bpj.2014.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baldus IB, Grater F (2012) Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys J 102:622–629. https://doi.org/10.1016/j.bpj.2011.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, Grater F (2010) Atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J Am Chem Soc 132:16790–16795. https://doi.org/10.1021/ja104763q

    Article  CAS  PubMed  Google Scholar 

  17. Wiita AP, Ainavarapu SR, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A 103:7222–7227. https://doi.org/10.1073/pnas.0511035103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiita AP et al (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127

    Article  CAS  Google Scholar 

  19. Chen VM, Ahamed J, Versteeg HH, Berndt MC, Ruf W, Hogg PJ (2006) Evidence for activation of tissue factor by an allosteric disulfide bond. Biochemistry 45:12020–12028

    Article  CAS  Google Scholar 

  20. Zhou B, Hogg PJ, Grater F (2017) One-way allosteric communication between the two disulfide bonds in tissue factor. Biophys J 112:78–86. https://doi.org/10.1016/j.bpj.2016.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matthias LJ et al (2002) Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat Immunol 3:727–732

    Article  CAS  Google Scholar 

  22. Butera D et al (2018) Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci Adv 4:eaaq1477. https://doi.org/10.1126/sciadv.aaq1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Passam F et al (2018) Mechano-redox control of integrin de-adhesion. elife 7. https://doi.org/10.7554/eLife.34843

  24. Sun MA, Wang Y, Zhang Q, Xia Y, Ge W, Guo D (2017) Prediction of reversible disulfide based on features from local structural signatures. BMC Genomics 18:279. https://doi.org/10.1186/s12864-017-3668-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong JW, Hogg PJ (2010) Analysis of disulfide bonds in protein structures. J Thromb Haemost. https://doi.org/10.1111/j.1538-7836.2010.03894.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pijning, A.E., Hogg, P. (2019). Classification of Protein Disulphide Bonds. In: Hogg, P. (eds) Functional Disulphide Bonds. Methods in Molecular Biology, vol 1967. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9187-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9187-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9186-0

  • Online ISBN: 978-1-4939-9187-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics