Skip to main content

Determining the Redox Potential of a Protein Disulphide Bond

  • Protocol
  • First Online:
Functional Disulphide Bonds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1967))

Abstract

The redox potential of a protein disulphide bond is one of the most important factors for determining the role of a disulphide bond. Disulphide bonds can have a stabilizing role for the structure of a protein or they can play a functional role which can regulate protein bioactivity. Determining the redox potential of disulphides can help distinguish the functional from the structural disulphide bonds. In this chapter, two methods for determining the redox potential of a protein disulphide bond are described. The first method uses maleimide-biotin labeling of free cysteine thiols and western blot densitometry to determine the fraction of reduced disulphide bond under various redox-buffering conditions. The second method uses differential cysteine labeling and tandem mass spectrometry to determine the redox potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45:7429–7433

    Article  CAS  Google Scholar 

  2. Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    CAS  PubMed  Google Scholar 

  3. Wunderlich M, Glockshuber R (1993) Redox properties of protein disulfide isomerase (dsba) from Escherichia coli. Protein Sci 2:717–726

    Article  CAS  Google Scholar 

  4. Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: From molecular mechanisms to functional significance. Antioxid Redox Sign 12:53–91

    Article  CAS  Google Scholar 

  5. Cook KM, Hogg PJ (2013) Post-translational control of protein function by disulfide bond cleavage. Antioxid Redox Sign 18:1987–2015

    Article  CAS  Google Scholar 

  6. Butera D, Cook KM, Chiu J, Wong JW, Hogg PJ (2014) Control of blood proteins by functional disulfide bonds. Blood 123:2000–2007

    Article  CAS  Google Scholar 

  7. Cook KM, McNeil HP, Hogg PJ (2013) Allosteric control of beta 11-tryptase by a redox active disulfide bond. J Biol Chem 288:34920–34929

    Article  CAS  Google Scholar 

  8. Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PL, Stein PE, Broughton Pipkin F, Read RJ (2010) A redox switch in angiotensinogen modulates angiotensin release. Nature 468:108–111

    Article  CAS  Google Scholar 

  9. Butera D, Passam F, Ju L, Cook KM, Woon H, Aponte-Santamaria C, Gardiner E, Davis AK, Murphy DA, Bronowska A, Luken BM, Baldauf C, Jackson S, Andrews R, Grater F, Hogg PJ (2018) Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci Adv 4:eaaq1477

    Article  Google Scholar 

  10. Ioannou Y, Zhang JY, Passam FH, Rahgozar S, Qi JC, Giannakopoulos B, Qi M, Yu P, Yu DM, Hogg PJ, Krilis SA (2010) Naturally occurring free thiols within beta 2-glycoprotein I in vivo: Nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood 116:1961–1970

    Article  CAS  Google Scholar 

  11. Giannakopoulos B, Gao L, Qi M, Wong JW, Yu DM, Vlachoyiannopoulos PG, Moutsopoulos HM, Atsumi T, Koike T, Hogg P, Qi JC, Krilis SA (2012) Factor XI is a substrate for oxidoreductases: enhanced activation of reduced FXI and its role in antiphospholipid syndrome thrombosis. J Autoimmun 39:121–129

    Article  CAS  Google Scholar 

  12. Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V, Spies T (2007) Disulphide-isomerase-enabled shedding of tumour-associated nkg2d ligands. Nature 447:482–486

    Article  CAS  Google Scholar 

  13. Butera D, Wind T, Lay AJ, Beck J, Castellino FJ, Hogg PJ (2014) Characterization of a reduced form of plasma plasminogen as the precursor for angiostatin formation. J Biol Chem 289:2992–3000

    Article  CAS  Google Scholar 

  14. Pijning AE, Chiu J, Yeo RX, Wong JWH, Hogg PJ (2018) Identification of allosteric disulfides from labile bonds in x-ray structures. R Soc Open Sci 5:171058

    Article  Google Scholar 

  15. Li W, Baldus IB, Grater F (2015) Redox potentials of protein disulfide bonds from free-energy calculations. J Phys Chem B 119:5386–5391

    Article  CAS  Google Scholar 

  16. Liang Hai Po H, Brophy Teresa M, Hogg Philip J (2011) Redox properties of the tissue factor cys186–cys209 disulfide bond. Biochem J 437:455–460

    Article  Google Scholar 

  17. Huber-Wunderlich M, Glockshuber R (1998) A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des 3:161–171

    Article  CAS  Google Scholar 

  18. Chiu J, Wong JWH, Hogg PJ (2014) Redox regulation of methionine aminopeptidase 2 activity. J Biol Chem 289:15035–15043

    Article  CAS  Google Scholar 

  19. Pasquarello C, Sanchez JC, Hochstrasser DF, Corthals GL (2004) N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Rapid Commun Mass Spectrom 18:117–127

    Article  CAS  Google Scholar 

  20. Bekendam RH, Bendapudi PK, Lin L, Nag PP, Pu J, Kennedy DR, Feldenzer A, Chiu J, Cook KM, Furie B, Huang M, Hogg PJ, Flaumenhaft R (2016) A substrate-driven allosteric switch that enhances PDI catalytic activity. Nat Commun 7:12579

    Article  CAS  Google Scholar 

  21. Read SA, O’Connor KS, Suppiah V, Ahlenstiel CLE, Obeid S, Cook KM, Cunningham A, Douglas MW, Hogg PJ, Booth D, George J, Ahlenstiel G (2017) Zinc is a potent and specific inhibitor of ifn-λ3 signalling. Nat Commun 8:15245

    Article  CAS  Google Scholar 

  22. Rothwarf DM, Scheraga HA (1992) Equilibrium and kinetic constants for the thiol-disulfide interchange reaction between glutathione and dithiothreitol. Proc Natl Acad Sci USA 89:7944–7948

    Article  CAS  Google Scholar 

  23. Gatlin CL, Kleemann GR, Hays LG, Link AJ, Yates JR 3rd (1998) Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem 263:93–101

    Article  CAS  Google Scholar 

  24. He L, Diedrich J, Chu YY, Yates JR 3rd (2015) Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal Chem 87:11361–11367

    Article  CAS  Google Scholar 

  25. Frickel EM, Frei P, Bouvier M, Stafford WF, Helenius A, Glockshuber R, Ellgaard L (2004) Erp57 is a multifunctional thiol-disulfide oxidoreductase. J Biol Chem 279:18277–18287

    Article  CAS  Google Scholar 

  26. Passam F, Chiu J, Ju L, Pijning A, Jahan Z, Mor-Cohen R, Yeheskel A, Kolsek K, Tharichen L, Aponte-Santamaria C, Grater F, Hogg PJ (2018) Mechano-redox control of integrin de-adhesion. elife 7. https://doi.org/10.7554/eLife.34843

  27. Chambers JE, Tavender TJ, Oka OBV, Warwood S, Knight D, Bulleid NJ (2010) The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by ero1α. J Biol Chem 285:29200–29207

    Article  CAS  Google Scholar 

  28. Krause G, Lundstrom J, Barea JL, Pueyo de la Cuesta C, Holmgren A (1991) Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in escherichia coli thioredoxin. J Biol Chem 266:9494–9500

    CAS  PubMed  Google Scholar 

  29. Cleland WW (1964) Dithiothreitol, a new protective reagent for SH groups*. Biochemistry 3:480–482

    Article  CAS  Google Scholar 

  30. Ravilious GE, Nguyen A, Francois JA, Jez JM (2012) Structural basis and evolution of redox regulation in plant adenosine-5′-phosphosulfate kinase. Proc Natl Acad Sci U S A 109:309–314

    Article  CAS  Google Scholar 

  31. Matthias LJ, Azimi I, Tabrett CA, Hogg PJ (2010) Reduced monomeric CD4 is the preferred receptor for HIV. J Biol Chem 285:40793–40799

    Article  CAS  Google Scholar 

  32. Nishii W, Kukimoto-Niino M, Terada T, Shirouzu M, Muramatsu T, Kojima M, Kihara H, Yokoyama S (2015) A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis. Nat Chem Biol 11:46–51

    Article  CAS  Google Scholar 

  33. Jin X, Stamnaes J, Klock C, DiRaimondo TR, Sollid LM, Khosla C (2011) Activation of extracellular transglutaminase 2 by thioredoxin. J Biol Chem 286:37866–37873

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina M. Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cook, K.M. (2019). Determining the Redox Potential of a Protein Disulphide Bond. In: Hogg, P. (eds) Functional Disulphide Bonds. Methods in Molecular Biology, vol 1967. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9187-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9187-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9186-0

  • Online ISBN: 978-1-4939-9187-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics