Skip to main content

Modeling Gene Networks to Understand Multistability in Stem Cells

  • Protocol
  • First Online:
Computational Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1975))

Abstract

Stem cells are unique in their ability to differentiate into diverse phenotypes capable of displaying radically different, yet stable, gene expression profiles. Understanding this multistable behavior is key to rationally influencing stem cell differentiation for both research and therapeutic purposes. To this end, mathematical paradigms have been adopted to simulate and explain the dynamics of complex gene networks. In this chapter, we introduce strategies for building deterministic and stochastic mathematical models of gene expression and demonstrate how analysis of these models can benefit our understanding of complex observed behaviors. Developing a mathematical understanding of biological processes is of utmost importance in understanding and controlling stem cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menn DJ, Wang X (2001) Stochastic and deterministic decision in cell fate. eLS. https://doi.org/10.1002/9780470015902.a0025319

  2. Menn DJ, Su R-Q, Wang X (2017) Control of synthetic gene networks and its applications. Quant Biol 5:124–135. https://doi.org/10.1007/s40484-017-0106-5

    Article  Google Scholar 

  3. Wang L-Z, Wu F, Flores K et al (2016) Build to understand: synthetic approaches to biology. Integr Biol 8:394–408. https://doi.org/10.1039/C5IB00252D

    Article  Google Scholar 

  4. Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27:465–471. https://doi.org/10.1038/nbt.1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Faucon PC, Pardee K, Kumar RM et al (2014) Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One 9:e102873. https://doi.org/10.1371/journal.pone.0102873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ma W, Trusina A, El-Samad H et al (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773. https://doi.org/10.1016/j.cell.2009.06.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wu M, Su R-Q, Li X et al (2013) Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci 110:10610–10615. https://doi.org/10.1073/pnas.1305423110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  9. Wu F, Su R-Q, Lai Y-C, Wang X (2017) Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination. eLife 6:e23702. https://doi.org/10.7554/eLife.23702

    Article  PubMed Central  PubMed  Google Scholar 

  10. Johnson KA, Goody RS (2011) The original michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry (Mosc) 50:8264–8269. https://doi.org/10.1021/bi201284u

    Article  CAS  Google Scholar 

  11. Weiss JN (1997) The hill equation revisited: uses and misuses. FASEB J 11:835–841. https://doi.org/10.1096/fasebj.11.11.9285481

    Article  CAS  PubMed  Google Scholar 

  12. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338. https://doi.org/10.1038/35002125

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Cao Y, Petzold LR, Gillespie DT (2008) Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol Prog 24:56–61. https://doi.org/10.1021/bp070255h

    Article  CAS  PubMed  Google Scholar 

  14. Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical network stochastic simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5:24. https://doi.org/10.1186/1471-2105-5-24

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menn, D., Wang, X. (2019). Modeling Gene Networks to Understand Multistability in Stem Cells. In: Cahan, P. (eds) Computational Stem Cell Biology. Methods in Molecular Biology, vol 1975. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9224-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9224-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9223-2

  • Online ISBN: 978-1-4939-9224-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics