Skip to main content

Enantioseparations by High-Performance Liquid Chromatography Based on Chiral Ligand Exchange

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

Although the first application of chiral ligand-exchange chromatography (CLEC) in HPLC dates back to late 1960s, this enantioselective strategy still represents the elective choice for the direct analysis of compounds endowed with chelating moieties. As a specific feature of the CLEC mechanism, the interaction between the chiral selector and the enantiomer does not take place in direct contact. Indeed, it is mediated by a central metal ion that, acting as a Lewis acid, simultaneously coordinates the two species, selector and analyte, through the activation of dative bonds. As a consequence, two diastereomeric mixed ternary complexes are generated in the column, ultimately leading to the stereoisomeric discrimination. CLEC applications can be carried out both with the chiral selector included in the mobile phase (chiral mobile phase, CMP), or as a part of the stationary phase. In the latter case, the chiral selector can be either covalently immobilized onto a solid support (bonded CSP, B-CSP) or physically adsorbed onto a conventional packing material, coated chiral stationary phase (C-CSP).

In this chapter, a selection of CLEC applications with CMP- and C-CSP-based chiral systems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gil-Av E, Feibush R, Charles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett 7:1009–1015

    Article  Google Scholar 

  2. Rogozhin SV, Davankov VA (1968) Chromatographic resolution of racemates on dissymmetric sorbents. Russ Chem Rev 37:565–575

    Article  Google Scholar 

  3. Davankov VA, Kurganov AA, Ponomareva TM (1988) Enantioselectivity of complex formation in ligand-exchange chromatographic systems with chiral stationary and/or chiral mobile phases. J Chromatogr 452:309–316

    Article  CAS  Google Scholar 

  4. Davankov VA (1994) Chiral selectors with chelating properties in liquid chromatography: fundamental reflections and selective review of recent developments. J Chromatogr A 666:55–76

    Article  CAS  Google Scholar 

  5. Natalini B, Sardella R, Giacchè N et al (2010) Chiral ligand-exchange separation and resolution of extremely rigid glutamate analogs: 1-aminospiro[2.2]pentyl-1,4-dicarboxylic acids. Anal Bioanal Chem 397:1997–2011

    Article  CAS  Google Scholar 

  6. Natalini B, Sardella R, Macchiarulo A et al (2008) S-trityl-(R)-cysteine, a powerful chiral selector for the analytical and preparative ligand-exchange chromatography of amino acids. J Sep Sci 31:696–704

    Article  CAS  Google Scholar 

  7. Natalini B, Sardella R, Pellicciari R (2005) O-benzyl-(S)-serine, a new chiral selector for ligand-exchange chromatography of amino acids. Curr Anal Chem 1:85–92

    Article  CAS  Google Scholar 

  8. Sardella R, Macchiarulo A, Carotti A et al (2012) Chiral mobile phase in ligand-exchange chromatography of amino acids: exploring the copper(II) salt anion effect with a computational approach. J Chromatogr A 1269:316–324

    Article  CAS  Google Scholar 

  9. Sardella R, Ianni F, Giacchè N et al (2012) Ligand-exchange enantioresolution of dihydroisoxazole amino acid derivatives acting as glutamatergic modulators. Tr Chromatogr 7:43–56

    CAS  Google Scholar 

  10. Natalini B, Sardella R, Macchiarulo A et al (2007) (S)-(−)-α,α-di(2-naphthyl)-2-pyrrolidinemethanol, a useful tool to study the recognition mechanism in chiral ligand-exchange chromatography. J Sep Sci 30:21–27

    Article  CAS  Google Scholar 

  11. Sliwka M, Ślebioda M, Kołodziejczyk AM (1998) Dynamic ligand-exchange chiral stationary phases derived from N-substituted (S)-phenylglycinol selectors. J Chromatogr A 824:7–14

    Article  CAS  Google Scholar 

  12. Hyun MH, Yang DH, Kim HJ et al (1994) Mechanistic evaluation of the resolution of a-amino acids on dynamic chiral stationary phases derived from amino alcohols by ligand-exchange chromatography. J Chromatogr A 684:189–200

    Article  CAS  Google Scholar 

  13. Hyun MH, Ryoo J-J, Lim NE (1993) Optical resolution of racemic α-amino acids on a dynamic chiral stationary phase by ligand exchange chromatography. J Liq Chromatogr 16:3249–3261

    Article  CAS  Google Scholar 

  14. Gil-Av E, Tishbee A, Hare PE (1980) Resolution of underivatized amino acids by reversed-phase chromatography. J Am Chem Soc 102:5115–5117

    Article  CAS  Google Scholar 

  15. Yan H, Row KH (2007) Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography. Anal Chim Acta 584:160–165

    Article  CAS  Google Scholar 

  16. Galaverna G, Pantò F, Dossena A et al (1995) Chiral separation of unmodified α-hydroxy acids by ligand exchange HPLC using chiral copper(II) complexes of (S)-phenylalaninamide as additives to the eluent. Chirality 7:331–336

    Article  CAS  Google Scholar 

  17. Armani E, Barazzoni L, Dossena A et al (1988) Bis(L-amino acid amidato) copper(II) complexes as chiral eluents in the enantiomeric separation of D,L-dansylamino acids by reversed-phase high-performance liquid chromatography. J Chromatogr 441:278–298

    Google Scholar 

  18. Lee SH, Oh TS, Lee HW (1992) Enantiomeric separation of free amino acids using N-alkyl-L-proline copper(II) complex as chiral mobile phase additive in reversed phase liquid chromatography. Bull Kor Chem Soc 13:280–285

    CAS  Google Scholar 

  19. Carotti A, Ianni F, Camaioni E et al (2017) N-decyl-S-trityl-(R)-cysteine, a new chiral selector for “green” ligand-exchange chromatography applications. J Pharm Biomed Anal 144:31–40

    Article  CAS  Google Scholar 

  20. Remelli M, Fornasari P, Dondi F et al (1993) Dynamic column-coating procedure for chiral ligand-exchange chromatography. Chromatographia 37:23–30

    Article  CAS  Google Scholar 

  21. Galaverna G, Corradini R, Dossena A et al (1996) Copper(II) complexes of N2-alkyl-(S)-amino acid amides as chiral selectors for dynamically coated chiral stationary phases in RP-HPLC. Chirality 8:189–196

    Article  CAS  Google Scholar 

  22. Knox JH, Wan QH (1995) Chiral chromatography of amino- and hydroxy-acids on surface modified porous graphite. Chromatographia 40:9–14

    Article  CAS  Google Scholar 

  23. Wan QH, Shaw PN, Davies MC et al (1997) Role of alkyl and aryl substituents in chiral ligand exchange chromatography of amino acids study using porous graphitic carbon coated with N-substituted-L-proline selectors. J Chromatogr A 786:249–257

    Article  CAS  Google Scholar 

  24. Qinghua M, Shengqing W, Ying G et al (2006) Preparation and application of Isoquinolinecarboxylic acid derivative as chiral stationary phase for ligand exchange chromatography. Chin J Anal Chem 34:311–315

    Article  Google Scholar 

  25. Kamimori H, Konishi M (2001) Evaluation and application of liquid chromatographic columns coated with ‘intelligent’ ligands: (I) acylcarnitine column. J Chromatogr A 929:1–12

    Article  CAS  Google Scholar 

  26. Zaher M, Baussanne I, Ravelet C et al (2008) Copper(II) complexes of lipophilic aminoglycoside derivatives for the amino acid enantiomeric separation by ligand-exchange liquid chromatography. J Chromatogr A 1185:291–295

    Article  CAS  Google Scholar 

  27. Ôi N, Kitahara H, Aoki F (1995) Direct separation of carboxylic acid and amine enantiomers by high-performance liquid chromatography on reversed-phase silica gels coated with chiral copper(II) complexes. J Chromatogr A 707:380–383

    Article  Google Scholar 

  28. Fukuhara T, Yuasa S (1990) Novel ligand-exchange chromatographic resolution of DL-amino acids using nucleotides and coenzymes. J Chromatogr Sci 28:114–117

    Article  CAS  Google Scholar 

  29. Zaher M, Baussanne I, Ravelet C et al (2009) Chiral ligand-exchange chromatography of amino acids using porous graphitic carbon coated with a dinaphthyl derivative of neamine. Anal Bioanal Chem 393:655–660

    Article  CAS  Google Scholar 

  30. Ôi N, Kitahara H, Aoki F (1993) Enantiomer separation by HPLC on reversed phase silica gel coated with copper(II) complexes of (R,R)-tartaric acid mono-amide derivatives. J Liq Chromatogr 16:893–901

    Article  Google Scholar 

  31. Galaverna G, Pelosi G, Gasparri Fava G et al (1994) Chiral molecular laminates: crystal structures of bis(N2-n-alkyl-(S)-phenylalaninamidato)copper(II) complexes. Tetahedron Asymm 5:1233–1240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roccaldo Sardella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Ianni, F., Pucciarini, L., Carotti, A., Sardella, R., Natalini, B. (2019). Enantioseparations by High-Performance Liquid Chromatography Based on Chiral Ligand Exchange. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_15

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics