Skip to main content

High-Content Imaging of Immunofluorescently Labeled TRPV1-Positive Sensory Neurons

  • Protocol
  • First Online:
TRP Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1987))

Abstract

Studying TRP channel expressing nociceptors requires the identification of the respective subpopulations as well as the quantification of dynamic cellular events. However, the heterogeneity of sensory neurons and associated nonneuronal cells demands the analysis of large numbers of cells to reflect the distribution of entire populations. Here we report a detailed workflow how to apply high-content screening (HCS) microscopy to signaling events in TRPV1-positive neurons as well as an approach to use the selective elimination of TRPV1 positive cells from dissociated rat sensory ganglia as base for transcriptomic analysis of TRPV1-positive cells and/or as control for TRPV1 antibody specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  Google Scholar 

  2. Tominaga M et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  Google Scholar 

  3. Caterina MJ et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  CAS  Google Scholar 

  4. Woodbury CJ et al (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24(28):6410–6415

    Article  CAS  Google Scholar 

  5. Cavanaugh DJ et al (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 106(22):9075–9080

    Article  CAS  Google Scholar 

  6. Mishra SK, Hoon MA (2010) Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation. Mol Cell Neurosci 43(1):157–163

    Article  CAS  Google Scholar 

  7. Mishra SK et al (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J 30(3):582–593. Epub 2010 Dec 7

    Article  CAS  Google Scholar 

  8. Hoffman EM, Schechter R, Miller KE (2010) Fixative composition alters distributions of immunoreactivity for glutaminase and two markers of nociceptive neurons, Nav1.8 and TRPV1, in the rat dorsal root ganglion. J Histochem Cytochem 58(4):329–344

    Article  CAS  Google Scholar 

  9. Price TJ, Flores CM (2007) Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 8(3):263–272

    Article  CAS  Google Scholar 

  10. Isensee J et al (2014) Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons. J Cell Sci 127(Pt 1):216–229

    Article  CAS  Google Scholar 

  11. Isensee J et al (2017) Synergistic regulation of serotonin and opioid signaling contributes to pain insensitivity in Nav1.7 knockout mice. Sci Signal 10(461)

    Google Scholar 

  12. Andres C et al (2012) Threshold-free population analysis identifies larger DRG neurons to respond stronger to NGF stimulation. PLoS One 7(3):e34257

    Article  CAS  Google Scholar 

  13. Jeftinija S et al (1992) Effect of capsaicin and resiniferatoxin on peptidergic neurons in cultured dorsal root ganglion. Regul Pept 39(2-3):123–135

    Article  CAS  Google Scholar 

  14. Szallasi A, Blumberg PM (1989) Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 30(2):515–520

    Article  CAS  Google Scholar 

  15. Szallasi A, Joo F, Blumberg PM (1989) Duration of desensitization and ultrastructural changes in dorsal root ganglia in rats treated with resiniferatoxin, an ultrapotent capsaicin analog. Brain Res 503(1):68–72

    Article  CAS  Google Scholar 

  16. Olah Z et al (2001) Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem 276(14):11021–11030

    Article  CAS  Google Scholar 

  17. Russell LC, Burchiel KJ (1984) Neurophysiological effects of capsaicin. Brain Res 320(2-3):165–176

    Article  CAS  Google Scholar 

  18. Karai L et al (2004) Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest 113(9):1344–1352

    Article  CAS  Google Scholar 

  19. Brown DC et al (2005) Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 103(5):1052–1059

    Article  Google Scholar 

  20. Tender GC et al (2005) Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J Neurosurg 102(3):522–525

    Article  Google Scholar 

  21. Iadarola MJ, Mannes AJ (2011) The vanilloid agonist resiniferatoxin for interventional-based pain control. Curr Top Med Chem 11(17):2171–2179

    Article  CAS  Google Scholar 

  22. Brown JD et al (2015) CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine. Sci Transl Med 7(305):305ra145

    Article  Google Scholar 

  23. Isensee J et al (2014) Subgroup-elimination Transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS One 9(12):e115731

    Article  Google Scholar 

  24. Isensee J et al (2017) Crosstalk from cAMP to ERK1/2 emerges during postnatal maturation of nociceptive neurons and is maintained during aging. J Cell Sci 130(13):2134–2146

    Article  CAS  Google Scholar 

  25. Team RDC (2011) R: a language and environment for statistical computing, ed. R.F.f.S. Computing, Vienna, Austria

    Google Scholar 

  26. Team, R (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA

    Google Scholar 

  27. Wickham H (2009) ggplot2: elegant graphics for data analysis. Use R! vol VIII. Springer, Dordrecht, p 212

    Book  Google Scholar 

  28. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom. Chapter 1: p. Unit 1 14

    Google Scholar 

  29. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  Google Scholar 

  30. Malin SA, Davis BM, Molliver DC (2007) Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc 2(1):152–160

    Article  CAS  Google Scholar 

  31. Carpenter AE et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hucho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Isensee, J., Hucho, T. (2019). High-Content Imaging of Immunofluorescently Labeled TRPV1-Positive Sensory Neurons. In: Ferrer-Montiel, A., Hucho, T. (eds) TRP Channels. Methods in Molecular Biology, vol 1987. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9446-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9446-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9445-8

  • Online ISBN: 978-1-4939-9446-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics