Skip to main content

Analyzing Biomolecular Ensembles

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

  • 3833 Accesses

Abstract

Several techniques are available to generate conformational ensembles of proteins and other biomolecules either experimentally or computationally. These methods produce a large amount of data that need to be analyzed to identify structure–dynamics–function relationship. In this chapter, we will cover different tools to unveil the information hidden in conformational ensemble data and to guide toward the rationalization of the data. We included routinely used approaches such as dimensionality reduction, as well as new methods inspired by high-order statistics and graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dror RO, Dirks RM, Grossman JP et al (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  2. Orozco M (2014) A theoretical view of protein dynamics. Chem Soc Rev 43:5051–5066

    Article  CAS  PubMed  Google Scholar 

  3. Bonomi M, Heller GT, Camilloni C et al (2017) Principles of protein structural ensemble determination. Curr Opin Struct Biol 42:106–116

    Article  CAS  PubMed  Google Scholar 

  4. Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105

    Article  CAS  PubMed  Google Scholar 

  5. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  CAS  PubMed  Google Scholar 

  7. Bernadó P, Blackledge M (2010) Proteins in dynamic equilibrium. Nature 468:1046–1048

    Article  PubMed  CAS  Google Scholar 

  8. Papaleo E (2015) Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity. Front Mol Biosci 2:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 20:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kay LE (2016) New views of functionally dynamic proteins by solution NMR spectroscopy. J Mol Biol 428:323–331

    Article  CAS  PubMed  Google Scholar 

  11. Papaleo E, Saladino G, Lambrughi M et al (2016) The role of protein loops and linkers in conformational dynamics and allostery. Chem Rev 116:6391–6423

    Article  CAS  PubMed  Google Scholar 

  12. Villali J, Kern D (2011) Choreographing an enzyme’s dance. Curr Opin Chem Biol 14:636–643

    Article  CAS  Google Scholar 

  13. Tzeng S-R, Kalodimos CG (2011) Protein dynamics and allostery: an NMR view. Curr Opin Struct Biol 21:62–67

    Article  CAS  PubMed  Google Scholar 

  14. Fujimoto A, Okada Y, Boroevich KA et al (2016) Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes. Sci Rep 6:26483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reimand J, Wagih O, Bader GD (2015) Evolutionary constraint and disease associations of post-translational modification sites in human genomes. PLoS Genet 11:e1004919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Reimand J, Wagih O, Bader GD (2013) The mutational landscape of phosphorylation signaling in cancer. Sci Rep 3:2651

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pon JR, a Marra M (2015) Driver and passenger mutations in cancer. Annu Rev Pathol Mech Dis 10:25–50

    Article  CAS  Google Scholar 

  18. Allison JR (2017) Using simulation to interpret experimental data in terms of protein conformational ensembles. Curr Opin Struct Biol 43:79–87

    Article  CAS  PubMed  Google Scholar 

  19. Spiwok V, Sucur Z, Hosek P (2015) Enhanced sampling techniques in biomolecular simulations. Biotechnol Adv 33:1130–1140

    Article  CAS  PubMed  Google Scholar 

  20. Abrams C, Bussi G (2013) Enhanced sampling in molecular dynamics Using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:163–199

    Article  CAS  Google Scholar 

  21. Eguchi T, Prince T, Wegiel B et al (2015) Role and regulation of myeloid zinc finger protein 1 in cancer. J Cell Biochem 116:2146–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nygaard M, Terkelsen T, Olsen AV et al (2016) The mutational landscape of the oncogenic MZF1 SCAN domain in cancer. Front Mol Biosci 3:1–18

    Article  CAS  Google Scholar 

  23. Rafn B, Nielsen CF, Andersen SH et al (2012) ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol Cell 45:764–776

    Article  CAS  PubMed  Google Scholar 

  24. Gaboli M, Kotsi PA, Gurrieri C et al (2001) Mzf1 controls cell proliferation and tumorigenesis service Mzf1 controls cell proliferation and tumorigenesis. Genes Dev 15:1625–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mudduluru G, Vajkoczy P, Allgayer H (2010) Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. In: Molecular cancer research : MCR, vol 8, pp 159–169

    Google Scholar 

  26. Sander TL, Stringer KF, Maki JL et al (2003) The SCAN domain defines a large family of zinc finger transcription factors. Gene 310:29–38

    Article  CAS  PubMed  Google Scholar 

  27. Peterson FC, Hayes PL, Waltner JK et al (2006) Structure of the SCAN domain from the tumor suppressor protein MZF1. J Mol Biol 363:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nam K, Honer C, Schumacher C (2004) Structural components of SCAN-domain dimerizations. Proteins 56:685–692

    Article  CAS  PubMed  Google Scholar 

  29. Liang Y, Huimei Hong F, Ganesan P et al (2012) Structural analysis and dimerization profile of the SCAN domain of the pluripotency factor Zfp206. Nucleic Acids Res 40:8721–8732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Noll L, Peterson FC, Hayes PL et al (2008) Heterodimer formation of the myeloid zinc finger 1 SCAN domain and association with promyelocytic leukemia nuclear bodies. Leuk Res 32:1582–1592

    Article  CAS  PubMed  Google Scholar 

  31. Sander TL, Haas AL, Peterson MJ et al (2000) Identification of a novel SCAN box-related protein that interacts with MZF1B. J Biol Chem 275:12857–12867

    Article  CAS  PubMed  Google Scholar 

  32. Lindorff-Larsen K, Best RB, Depristo MA et al (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    Article  CAS  PubMed  Google Scholar 

  33. Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  34. Lindorff-Larsen K, Maragakis P, Piana S et al (2012) Systematic validation of protein force fields against experimental data. PLoS One 7:e32131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Papaleo E, Sutto L, Gervasio FL et al (2014) Conformational changes and free energies in a proline isomerase. J Chem Theory Comput 10:4169–4174

    Article  CAS  PubMed  Google Scholar 

  36. Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  PubMed  Google Scholar 

  38. Bjelkmar P, Larsson P, Cuendet MA et al (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction Maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466

    Article  CAS  PubMed  Google Scholar 

  39. Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113:9004–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li DW, Brüschweiler R (2010) NMR-based protein potentials. Angew Chem Int Ed 49:6778–6780

    Article  CAS  Google Scholar 

  42. Jiang F, Zhou C-Y, Wu Y-D (2014) Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. J Phys Chem B 118:6983–6998

    Article  CAS  PubMed  Google Scholar 

  43. Lange OF, van der Spoel D, de Groot BL (2010) Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. Biophys J 99:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Unan H, Yildirim A, Tekpinar M (2015) Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field. J Comput Aided Mol Des 29:655–665

    Article  CAS  PubMed  Google Scholar 

  45. Tiberti M, Papaleo E, Bengtsen T et al (2015) ENCORE: software for quantitative ensemble comparison. PLoS Comput Biol 11:e1004415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. MartĂ­n-GarcĂ­a F, Papaleo E, Gomez-Puertas P et al (2015) Comparing molecular dynamics force fields in the essential subspace. PLoS One 10:e0121114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Costantini S, Paladino A, Facchiano AM (2008) CALCOM: a software for calculating the center of mass of proteins. Bioinformation 2:271–272

    Article  PubMed  PubMed Central  Google Scholar 

  48. Daidone I, Amadei A (2012) Essential dynamics: foundation and applications. Comput Mol Sci 2:762–770

    Article  CAS  Google Scholar 

  49. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  CAS  PubMed  Google Scholar 

  50. Hess B (2000) Similarities between principal components of protein dynamics and random diffusion. Phys Rev E 62:8438–8448

    Article  CAS  Google Scholar 

  51. Papaleo E, Mereghetti P, Fantucci P et al (2009) Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J Mol Graph Model 27:889–899

    Article  CAS  PubMed  Google Scholar 

  52. Maisuradze G, Liwo A, Scheraga H (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385:312–329

    Article  CAS  PubMed  Google Scholar 

  53. Maisuradze GG, Leitner DM (2007) Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima. Proteins 67:569–578

    Article  CAS  PubMed  Google Scholar 

  54. Hess B (2002) Convergence of sampling in protein simulations. Phys Rev E Stat Nonlin Soft Matter Phys 65:031910

    Article  PubMed  CAS  Google Scholar 

  55. Mereghetti P, Riccardi L, Brandsdal BO et al (2010) Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model. J Phys Chem B 114:7609–7619

    Article  CAS  PubMed  Google Scholar 

  56. Yao X, Scarabelli G, Skjaerven L et al (2015) Protein structure networks with Bio3D. Grantlab, Manassas, VA, pp 1–22

    Google Scholar 

  57. Skjærven L, Yao X-Q, Scarabelli G et al (2014) Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics 15:399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lindorff-Larsen K, Ferkinghoff-Borg J (2009) Similarity measures for protein ensembles. PLoS One 4:e4203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976

    Article  CAS  PubMed  Google Scholar 

  60. Agrafiotis DK, Xu H (2002) A self-organizing principle for learning nonlinear manifolds. Proc Natl Acad Sci U S A 99:15869–15872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Michaud-Agrawal N, Denning EJ, Woolf TB et al (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11:205–217

    Article  CAS  PubMed  Google Scholar 

  63. Hünenberger PH, Mark AE, van Gunsteren WF (1995) Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J Mol Biol 252:492–503

    Article  PubMed  Google Scholar 

  64. Lange OF, Grubmüller H (2008) Full correlation analysis of conformational protein dynamics. Proteins 70:1294–1312

    Article  CAS  PubMed  Google Scholar 

  65. Tiberti M, Invernizzi G, Papaleo E (2015) (Dis)similarity index to compare correlated motions in molecular simulations. J Chem Theory Comput 11:4404–4414

    Article  CAS  PubMed  Google Scholar 

  66. Seeber M, Felline A, Raimondi F et al (2011) Wordom: a user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J Comput Chem 32:1183–1194

    Article  CAS  PubMed  Google Scholar 

  67. Invernizzi G, Tiberti M, Lambrughi M et al (2014) Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops. PLoS Comput Biol 10:e1003744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Berjanskii M, Zhou J, Liang Y et al (2012) Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures. J Biomol NMR 53:167–180

    Article  CAS  PubMed  Google Scholar 

  69. Li D, Brüschweiler R (2015) PPM_One: a static protein structure based chemical shift predictor. J Biomol NMR 62:403–409

    Article  CAS  PubMed  Google Scholar 

  70. Guo J, Zhou HX (2016) Protein Allostery and Conformational Dynamics. Chem Rev 116:6503–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ribeiro AAST, Ortiz V (2016) A Chemical Perspective on Allostery. Chem Rev 116:6488–6502

    Article  CAS  PubMed  Google Scholar 

  72. Vuillon L, Lesieur C (2015) From local to global changes in proteins: a network view. Curr Opin Struct Biol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  73. Di Paola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48

    Article  PubMed  CAS  Google Scholar 

  74. Vishveshwara S, Ghosh A, Hansia P (2009) Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci 10:146–160

    Article  CAS  PubMed  Google Scholar 

  75. Csermely P, Nussinov R, Szilágyi A (2013) From allosteric drugs to allo-network drugs: state of the art and trends of design, synthesis and computational methods. Curr Top Med Chem 13:2–4

    Article  CAS  PubMed  Google Scholar 

  76. Tiberti M, Invernizzi G, Lambrughi M et al (2014) PyInteraph : a framework for the analysis of interaction networks in structural ensembles of proteins. J Chem Inf Model 54:1537–1551

    Article  CAS  PubMed  Google Scholar 

  77. Brown DK, Penkler DL, Sheik Amamuddy O et al (2017) MD-TASK: a software suite for analyzing molecular dynamics trajectories. Bioinformatics 33:2768–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salamanca Viloria J, Allega MF, Lambrughi M et al (2016) An optimal distance cutoff for contact-based protein structure networks using side chain center of masses. Sci Rep 7:2838

    Article  CAS  Google Scholar 

  79. Lovell SC, Word JM, Richardson JS et al (2000) The penultimate rotamer library. Proteins 40:389–408

    Article  CAS  PubMed  Google Scholar 

  80. Lange OF, Grubmüller H (2006) Can principal components yield a dimension reduced description of protein dynamics on long time scales? J Phys Chem B 110:22842–22852

    Article  CAS  PubMed  Google Scholar 

  81. Wriggers W, Stafford KA, Shan Y et al (2009) Automated event detection and activity monitoring in long molecular dynamics simulations. J Chem Theory Comput 5:2595–2605

    Article  CAS  PubMed  Google Scholar 

  82. Savol AJ, Burger VM, Agarwal PK et al (2011) QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin. Bioinformatics (Oxford) 27:i52–i60

    Article  CAS  Google Scholar 

  83. Ramanathan A, Savol AJ, Agarwal PK et al (2012) Event detection and sub-state discovery from biomolecular simulations using higher-order statistics: application to enzyme adenylate kinase. Proteins 80:2536–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fan Z, Dror RO, Mildorf TJ et al (2015) Identifying localized changes in large systems: change-point detection for biomolecular simulations. Proc Natl Acad Sci U S A 112:7454–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kovacs JA, Wriggers W (2016) Spatial heat maps from fast information matching of fast and slow degrees of freedom: application to molecular dynamics simulations. J Phys Chem B 120:8473–8484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brinda KV, Vishveshwara S (2005) A network representation of protein structures: implications for protein stability. Biophys J 89:4159–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Papaleo E, Renzetti G, Tiberti M (2012) Mechanisms of intramolecular communication in a hyperthermophilic acylaminoacyl peptidase: a molecular dynamics investigation. PLoS One 7:e35686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Papaleo E, Pasi M, Tiberti M et al (2011) Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations. PLoS One 6:e24214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pasi M, Tiberti M, Arrigoni A et al (2012) xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures. J Chem Inf Model 279:1–6

    Google Scholar 

  90. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601

    Article  CAS  Google Scholar 

  91. Camilloni C, Cavalli A, Vendruscolo M (2013) Replica-averaged metadynamics. J Chem Theory Comput 9:5610–5617

    Article  CAS  PubMed  Google Scholar 

  92. Bonomi M, Camilloni C, Vendruscolo M (2016) Metadynamic metainference: enhanced sampling of the metainference ensemble using metadynamics. Sci Rep 6:31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lambrughi M, De Gioia L, Gervasio FL et al (2016) DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions. Nucleic Acids Res 44:9096–9109

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by two ISCRA-CINECA HPC Grants (NetDyn-HP10C2TOOC and ALLO-PCM-HP10CWP9KW) and two EU-PRACE DECI projects DECI-13th and DECI-14th and DeiC Pilot Project in 2016–2017 on a Danish Infrastructure Computerome. EP group is supported by LEO Foundation Grant 2017–2019 (grant number LF17006), Alfred Benzon Investigator Fellowships 2017–2019, a DFF-FNU grant from the Danish Council of Independent Research (grant number 7014-00272B), and Carlsberg Foundation Distinguished Fellowship (grant number CF18-0314). EP group is also part of the Center of Excellence for Autophagy, Recycling and Disease funded by Danmarks Grundforskningsfond (grant number DNRF125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Papaleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lambrughi, M. et al. (2019). Analyzing Biomolecular Ensembles. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics