Skip to main content

Phylogenetic Methods to Study Light Signaling

  • Protocol
  • First Online:
Phytochromes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2026))

  • 1189 Accesses

Abstract

Phylogenetic comparative methods (PCM) represent a rigorous approach for inferring functional evolution. To infer the origin and evolution of a function, PCM use a phylogenetic tree of the species in which the function has evolved and functional data from those species. These data enable reconstruction of ancestral states and inference of how the function evolved along the branches of the species tree. PCM can be applied to understand any aspect of light signaling, from early events in photoactivation, to interactions with signaling partners, to physiological responses. Integrating evolutionary histories of individual aspects of light signaling obtained through PCM with network modeling of protein–protein interactions for light signaling would enable a deep understanding of the evolution in light signaling pathways and their roles in helping plants adapt to changing environments. Here we describe the steps for using PCM to infer functional evolution using a species tree and trait data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H, Wang H (2015) Phytochrome signaling: time to tighten up the loose ends. Mol Plant 8:540–551

    Article  CAS  Google Scholar 

  2. Pagel M (1999) The Maximum Likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Google Scholar 

  3. Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852

    Article  CAS  Google Scholar 

  4. Ranwez V, Harispe S, Delsuc F, Douzery EJP (2011) MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS One 6:e22594

    Article  CAS  Google Scholar 

  5. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  Google Scholar 

  6. Kück P, Meusemann K (2010) FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol 56:1115–1118

    Article  Google Scholar 

  7. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  Google Scholar 

  8. Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux PM et al (2018) 10KP: A phylodiverse genome sequencing plan. Gigascience 7:1–9

    Article  CAS  Google Scholar 

  9. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

  10. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  Google Scholar 

  11. Mathews S, Tremonte D (2012) Tests of the link between functional innovation and positive selection at phytochrome A: the phylogenetic distribution of far-red high-irradiance responses in seedling development. Int J Plant Sci 173:662–672

    Article  CAS  Google Scholar 

  12. Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org

    Google Scholar 

  13. Wickett NJ, Mirarab S, Nguyen N et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:E4859–E4868

    Article  CAS  Google Scholar 

  14. Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23

    Article  Google Scholar 

  15. Hinchliff CE, Smith SA, Allman JF et al (2015) Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci U S A 112:12764–12769

    Article  CAS  Google Scholar 

  16. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460

    Article  Google Scholar 

  17. Levin RA, Whelan A, Miller JS (2009) The utility of nuclear conserved ortholog set II (COSII) genomic regions for species-level phylogenetic inference in Lycium (Solanaceae). Mol Phylogenet Evol 53:881–890

    Article  CAS  Google Scholar 

  18. Jeong Y-M, Chung W-H, Chung H, Kim N, Park B-S, Lim K-B, Yu H-J, Mun J-H (2014) Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica. Theor Appl Genet 127:1975–1989

    Article  CAS  Google Scholar 

  19. Smith SA, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9:37

    Article  Google Scholar 

  20. Freyman WA (2015) SUMAC: constructing phylogenetic supermatrices and assessing partially decisive taxon coverage. Evol Bioinformatics Online 11:263–266

    Google Scholar 

  21. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  CAS  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  23. Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford/Malden, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Mathews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, FW., Mathews, S. (2019). Phylogenetic Methods to Study Light Signaling. In: Hiltbrunner, A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9612-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9612-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9611-7

  • Online ISBN: 978-1-4939-9612-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics