Skip to main content

A Cell-Free Replication System for Positive-Strand RNA Viruses for Identification and Characterization of Plant Resistance Gene Products

  • Protocol
  • First Online:
Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2028))

Abstract

Plant cells have lytic vacuoles, which contain ribonucleases and proteinases. The vacuoles are fragile and easily collapsed upon homogenization of plant tissues or cells. Thus, with a few exceptions, plant cell extracts are contaminated by vacuole-derived lytic enzymes and unsuitable for biochemical analyses. Here, we describe a method for removing the vacuoles from intact tobacco BY-2 protoplasts and for cell-free translation and replication of genomic RNA of positive-strand RNA viruses using the extract of evacuolated protoplasts. We also describe a method for the identification and functional characterization of a plant resistance gene product using this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komoda K, Naito S, Ishikawa M (2004) Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. Proc Natl Acad Sci U S A 101(7):1863–1867. https://doi.org/10.1073/pnas.0307131101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kawamura-Nagaya K, Ishibashi K, Huang Y-P, Miyashita S, Ishikawa M (2014) Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication. Proc Natl Acad Sci U S A 111(16):E1620–E1628. https://doi.org/10.1073/pnas.1321660111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ishibashi K, Ishikawa M (2016) Replication of tobamovirus RNA. Annu Rev Phytopathol 54(1):55–78. https://doi.org/10.1146/annurev-phyto-080615-100217

    Article  CAS  PubMed  Google Scholar 

  4. De Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00307

  5. Kobayashi K, Sekine K-T, Nishiguchi M (2014) Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance? J Gen Plant Pathol 80(4):327–336. https://doi.org/10.1007/s10327-014-0527-1

    Article  Google Scholar 

  6. Motoyoshi F, Oshima N (1977) Expression of genetically controlled resistance to tobacco mosaic mirus infection in isolated tomato leaf mesophyll protoplasts. J Gen Virol 34(3):499–506. https://doi.org/10.1099/0022-1317-34-3-499

    Article  Google Scholar 

  7. Meshi T, Motoyoshi F, Adachi A, Watanabe Y, Takamatsu N, Okada Y (1988) Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J 7(6):1575–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 104(34):13833–13838. https://doi.org/10.1073/pnas.0703203104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishibashi K, Ishikawa M (2013) The resistance protein Tm-1 inhibits formation of a tomato mosaic virus replication protein-host membrane protein complex. J Virol 87(14):7933–7939. https://doi.org/10.1128/jvi.00743-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishibashi K, Ishikawa M (2014) Mechanisms of tomato mosaic virus RNA replication and its inhibition by the host resistance factor Tm-1. Curr Opin Virol 9(Supplement C):8–13. https://doi.org/10.1016/j.coviro.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  11. Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T, Ishikawa M, Matsumura H, Katoh E (2014) Structural basis for the recognition–evasion arms race between tomato mosaic virus and the resistance gene Tm-1. Proc Natl Acad Sci U S A 111(33):E3486–E3495. https://doi.org/10.1073/pnas.1407888111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79(2):568–570. https://doi.org/10.1104/pp.79.2.568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Ishibashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishibashi, K., Ishikawa, M. (2019). A Cell-Free Replication System for Positive-Strand RNA Viruses for Identification and Characterization of Plant Resistance Gene Products. In: Kobayashi, K., Nishiguchi, M. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 2028. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9635-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9635-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9634-6

  • Online ISBN: 978-1-4939-9635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics