Skip to main content

Click-Shielded and Targeted Lipopolyplexes

  • Protocol
  • First Online:
Oligonucleotide-Based Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2036))

Abstract

Lipopolyplexes present well-established nucleic acid carriers assembled from sequence-defined cationic lipo-oligomers and DNA or RNA. They can be equipped with additional surface functionality, like shielding and targeting, in a stepwise assembly method using click chemistry. Here, we describe the synthesis of the required compounds, an azide-bearing lipo-oligomer structure and dibenzocyclooctyne (DBCO) click agents as well as the assembly of the compounds with siRNA into a surface-functionalized formulation. Both the lipo-oligomer and the DBCO-equipped shielding and targeting agents are produced by solid-phase synthesis (SPS). This enables for precise variation of all functional units, like variation in the amount of DBCO attachment sites or polyethylene glycol (PEG) length. Special cleavage conditions with only 5% trifluoroacetic acid (TFA) must be applied for the synthesis of the shielding and targeting agents due to acid lability of the DBCO unit. The two-step lipopolyplex assembly technique allows for separate optimization of the core and the shell of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175(4025):949–955

    Article  CAS  Google Scholar 

  2. Fire A (1999) RNA-triggered gene silencing. Trends Genet 15(9):358–363. https://doi.org/10.1016/S0168-9525(99)01818-1

    Article  CAS  PubMed  Google Scholar 

  3. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5). https://doi.org/10.1002/jgm.3015

    Article  Google Scholar 

  4. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. https://doi.org/10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  5. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251. https://doi.org/10.1038/418244a

    Article  CAS  PubMed  Google Scholar 

  6. Reinhard S, Wagner E (2017) How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol Biosci 17(1). https://doi.org/10.1002/mabi.201600152

    Article  Google Scholar 

  7. Wagner E (2012) Functional polymer conjugates for medicinal nucleic acid delivery. Polym Nanomedicine 247:1–29. https://doi.org/10.1007/12_2011_148

    Article  CAS  Google Scholar 

  8. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6(6):443–453. https://doi.org/10.1038/nrd2310

    Article  CAS  PubMed  Google Scholar 

  9. Wagner E (2007) Programmed drug delivery: nanosystems for tumor targeting. Expert Opin Biol Ther 7(5):587–593. https://doi.org/10.1517/14712598.7.5.587

    Article  CAS  PubMed  Google Scholar 

  10. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Semple SC, Akinc A, Chen JX, Sandhu AP, Mui BL, Cho CK, Sah DWY, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen QM, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–U118. https://doi.org/10.1038/nbt.1602

    Article  CAS  PubMed  Google Scholar 

  12. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Jayaprakash KN, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DWY, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569. https://doi.org/10.1038/nbt1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin B, Sainlos M, Aissaoui A, Oudrhiri N, Hauchecorne M, Vigneron JP, Lehn JM, Lehn P (2005) The design of cationic lipids for gene delivery. Curr Pharm Des 11(3):375–394. https://doi.org/10.2174/1381612053382133

    Article  CAS  PubMed  Google Scholar 

  14. Ma JB, Ye KQ, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429(6989):318–322. https://doi.org/10.1038/nature02519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee ER, Marshall J, Siegel CS, Jiang CW, Yew NS, Nichols MR, Nietupski JB, Ziegler RJ, Lane MB, Wang KX, Wan NC, Scheule RK, Harris DJ, Smith AE, Cheng SH (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7(14):1701–1717. https://doi.org/10.1089/hum.1996.7.14-1701

    Article  CAS  PubMed  Google Scholar 

  16. Green JJ, Langer R, Anderson DG (2008) A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 41(6):749–759. https://doi.org/10.1021/ar7002336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uchida H, Miyata K, Oba M, Ishii T, Suma T, Itaka K, Nishiyama N, Kataoka K (2011) Odd-even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles. J Am Chem Soc 133(39):15524–15532. https://doi.org/10.1021/ja204466y

    Article  CAS  PubMed  Google Scholar 

  18. Frohlich T, Edinger D, Klager R, Troiber C, Salcher E, Badgujar N, Martin I, Schaffert D, Cengizeroglu A, Hadwiger P, Vornlocher HP, Wagner E (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 160(3):532–541. https://doi.org/10.1016/j.jconrel.2012.03.018

    Article  CAS  PubMed  Google Scholar 

  19. Krzyszton R, Salem B, Lee DJ, Schwake G, Wagner E, Radler JO (2017) Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles. Nanoscale 9(22):7442–7453. https://doi.org/10.1039/c7nr01593c

    Article  CAS  PubMed  Google Scholar 

  20. Schaffert D, Troiber C, Salcher EE, Frohlich T, Martin I, Badgujar N, Dohmen C, Edinger D, Klager R, Maiwald G, Farkasova K, Seeber S, Jahn-Hofmann K, Hadwiger P, Wagner E (2011) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed 50(38):8986–8989. https://doi.org/10.1002/anie.201102165

    Article  CAS  Google Scholar 

  21. Morys S, Wagner E, Lachelt U (2016) From artificial amino acids to sequence-defined targeted oligoaminoamides. Methods Mol Biol 1445:235–258. https://doi.org/10.1007/978-1-4939-3718-9_15

    Article  CAS  PubMed  Google Scholar 

  22. Lee DJ, Wagner E, Lehto T (2015) Sequence-defined oligoaminoamides for the delivery of siRNAs. Methods Mol Biol 1206:15–27. https://doi.org/10.1007/978-1-4939-1369-5_2

    Article  CAS  PubMed  Google Scholar 

  23. Dohmen C, Edinger D, Frohlich T, Schreiner L, Lachelt U, Troiber C, Radler J, Hadwiger P, Vornlocher HP, Wagner E (2012) Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery. ACS Nano 6(6):5198–5208. https://doi.org/10.1021/nn300960m

    Article  CAS  PubMed  Google Scholar 

  24. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stoter M, Epstein-Barash H, Zhang L, Koteliansky V, Fitzgerald K, Fava E, Bickle M, Kalaidzidis Y, Akinc A, Maier M, Zerial M (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31(7):638–646. https://doi.org/10.1038/nbt.2612

    Article  CAS  PubMed  Google Scholar 

  25. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karagiannis E, Love K, Chen D, Zoncu R, Buganim Y, Schroeder A, Langer R, Anderson DG (2013) Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 31(7):653–658. https://doi.org/10.1038/nbt.2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543–552. https://doi.org/10.1038/nrg3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein PM, Reinhard S, Lee DJ, Muller K, Ponader D, Hartmann L, Wagner E (2016) Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. Nanoscale 8(42):18098–18104. https://doi.org/10.1039/c6nr05767e

    Article  CAS  PubMed  Google Scholar 

  28. Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E (2008) Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 130(11):3272–3273. https://doi.org/10.1021/ja710344v

    Article  CAS  PubMed  Google Scholar 

  29. Leng Q, Chou ST, Scaria PV, Woodle MC, Mixson AJ (2014) Increased tumor distribution and expression of histidine-rich plasmid polyplexes. J Gene Med 16(9-10):317–328. https://doi.org/10.1002/jgm.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hughes JA, Rao GA (2005) Targeted polymers for gene delivery. Expert Opin Drug Deliv 2(1):145–157. https://doi.org/10.1517/17425247.2.1.145

    Article  CAS  PubMed  Google Scholar 

  31. Kos P, Lachelt U, Herrmann A, Mickler FM, Doblinger M, He DS, Levacic AK, Morys S, Brauchle C, Wagner E (2015) Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale 7(12):5350–5362. https://doi.org/10.1039/c4nr06556e

    Article  CAS  PubMed  Google Scholar 

  32. Morys S, Levacic AK, Urnauer S, Kempter S, Kern S, Radler JO, Spitzweg C, Lachelt U, Wagner E (2017) Influence of defined hydrophilic blocks within oligoaminoamide copolymers: compaction versus shielding of pDNA nanoparticles. Polymers 9(4). https://doi.org/10.3390/polym9040142

    Article  Google Scholar 

  33. Tockary TA, Osada K, Motoda Y, Hiki S, Chen QX, Takeda KM, Dirisala A, Osawa S, Kataoka K (2016) Rod-to-globule transition of pDNA/PEG-poly(L-lysine) polyplex micelles induced by a collapsed balance between DNA rigidity and PEG crowdedness. Small 12(9):1193–1200. https://doi.org/10.1002/smll.201501815

    Article  CAS  PubMed  Google Scholar 

  34. Troiber C, Edinger D, Kos P, Schreiner L, Klager R, Herrmann A, Wagner E (2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 34(5):1624–1633. https://doi.org/10.1016/j.biomaterials.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  35. Muller K, Kessel E, Klein PM, Hohn M, Wagner E (2016) Post-PEGylation of siRNA lipo-oligoamino amide polyplexes using tetra-glutamylated folic acid as ligand for receptor-targeted delivery. Mol Pharm 13(7):2332–2345. https://doi.org/10.1021/acs.molpharmaceut.6b00102

    Article  CAS  PubMed  Google Scholar 

  36. Muller K, Klein PM, Heissig P, Roidl A, Wagner E (2016) EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery. Nanotechnology 27(46):464001. https://doi.org/10.1088/0957-4484/27/46/464001

    Article  CAS  PubMed  Google Scholar 

  37. Morys S, Urnauer S, Spitzweg C, Wagner E (2018) EGFR targeting and shielding of pDNA lipopolyplexes via bivalent attachment of a sequence-defined PEG agent. Macromol Biosci 18(1). https://doi.org/10.1002/mabi.201700203

    Article  Google Scholar 

  38. Zhang W, Muller K, Kessel E, Reinhard S, He D, Klein PM, Hohn M, Rodl W, Kempter S, Wagner E (2016) Targeted siRNA delivery using a lipo-oligoaminoamide nanocore with an influenza peptide and transferrin shell. Adv Healthc Mater 5(12):1493–1504. https://doi.org/10.1002/adhm.201600057

    Article  CAS  PubMed  Google Scholar 

  39. Klein PM, Kern S, Lee DJ, Schmaus J, Hohn M, Gorges J, Kazmaier U, Wagner E (2018) Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials 178:630–642. https://doi.org/10.1016/j.biomaterials.2018.03.031

    Article  CAS  PubMed  Google Scholar 

  40. Klein PM, Klinker K, Zhang W, Kern S, Kessel E, Wagner E, Barz M (2018) Efficient shielding of polyplexes using heterotelechelic polysarcosines. Polymers 10(6). https://doi.org/10.3390/polym10060689

    Article  Google Scholar 

  41. Lee DJ, Kessel E, Edinger D, He D, Klein PM, Voith von Voithenberg L, Lamb DC, Lachelt U, Lehto T, Wagner E (2016) Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials 77:98–110. https://doi.org/10.1016/j.biomaterials.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  42. Lee DJ, Kessel E, Lehto T, Liu X, Yoshinaga N, Padari K, Chen YC, Kempter S, Uchida S, Radler JO, Pooga M, Sheu MT, Kataoka K, Wagner E (2017) Systemic delivery of folate-PEG siRNA lipopolyplexes with enhanced intracellular stability for in vivo gene silencing in leukemia. Bioconjug Chem 28(9):2393–2409. https://doi.org/10.1021/acs.bioconjchem.7b00383

    Article  CAS  PubMed  Google Scholar 

  43. Schaffert D, Badgujar N, Wagner E (2011) Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Org Lett 13(7):1586–1589. https://doi.org/10.1021/ol200381z

    Article  CAS  PubMed  Google Scholar 

  44. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  Google Scholar 

  45. Reinhard S, Zhang W, Wagner E (2017) Optimized solid-phase-assisted synthesis of oleic acid containing siRNA nanocarriers. ChemMedChem 12(17):1464–1470. https://doi.org/10.1002/cmdc.201700350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG SFB1032 B4 (P.K. and E.W.), SFB1066 B5 (P.K. and E.W.), and DFG Excellence Cluster Nanosystems Initiative Munich (E.W.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klein, P.M., Wagner, E. (2019). Click-Shielded and Targeted Lipopolyplexes. In: Gissberg, O., Zain, R., Lundin, K. (eds) Oligonucleotide-Based Therapies. Methods in Molecular Biology, vol 2036. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9670-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9670-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9669-8

  • Online ISBN: 978-1-4939-9670-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics